使用NumPy's broadcasted comparison
,我们可以2D
以矢量化的方式创建这样的掩码。其余的工作都围绕sum-reduction
着我们可以从中获得帮助的第一个轴np.einsum
。因此,我们会有这样的实现 -
N = my2darray.shape[0]
mask = myvector <= np.arange(N)[:,None]
uout = np.true_divide(np.einsum('ij,ij->j',my2darray,~mask),myvector)
lout = np.true_divide(np.einsum('ij,ij->j',my2darray,mask),N-myvector)
样品运行以验证结果 -
In [184]: N = my2darray.shape[0]
...: mask = myvector <= np.arange(N)[:,None]
...: uout = np.true_divide(np.einsum('ij,ij->j',my2darray,~mask),myvector)
...: lout = np.true_divide(np.einsum('ij,ij->j',my2darray,mask),N-myvector)
...:
In [185]: uout
Out[185]: array([ 6. , 4.6, 4. , 0. ])
In [186]: [my2darray[:item,i].mean() for i,item in enumerate(myvector)]
Out[186]: [6.0, 4.5999999999999996, 4.0, 0.0] # Loopy version results
In [187]: lout
Out[187]: array([ 5.2 , 4. , 2.66666667, 2. ])
In [188]: [my2darray[item:,i].mean() for i,item in enumerate(myvector)]
Out[188]: [5.2000000000000002, 4.0, 2.6666666666666665, 2.0] # Loopy version
另一种可能更快的方法是计算上掩码的总和,将其存储并从中减去沿2D
输入数组整个长度的第一个轴的总和。然后可以将其用于计算下部平均值。因此,在我们存储N
和计算之后mask
,我们将 -
usum = np.einsum('ij,ij->j',my2darray,~mask)
uout = np.true_divide(usums,myvector)
lout = np.true_divide(my2darray.sum(0) - usums,N-myvector)