我想并行运行一个函数,并等到所有并行节点都完成,使用 joblib。就像在示例中一样:
from math import sqrt
from joblib import Parallel, delayed
Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in range(10))
但是,我希望像tqdm一样在单个进度条中看到执行,显示已经完成了多少作业。
你会怎么做?
我想并行运行一个函数,并等到所有并行节点都完成,使用 joblib。就像在示例中一样:
from math import sqrt
from joblib import Parallel, delayed
Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in range(10))
但是,我希望像tqdm一样在单个进度条中看到执行,显示已经完成了多少作业。
你会怎么做?
就放range(10)
里面tqdm(...)
吧!这对你来说可能看起来太好了,但它确实有效(在我的机器上):
from math import sqrt
from joblib import Parallel, delayed
from tqdm import tqdm
result = Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in tqdm(range(100000)))
我已经创建了pqdm一个具有并发期货的并行 tqdm 包装器,以便轻松完成这项工作,试一试!
安装
pip install pqdm
并使用
from pqdm.processes import pqdm
# If you want threads instead:
# from pqdm.threads import pqdm
args = [1, 2, 3, 4, 5]
# args = range(1,6) would also work
def square(a):
return a*a
result = pqdm(args, square, n_jobs=2)
修改nth 的最佳答案以允许动态标志使用或不使用 TQDM 并提前指定总数,以便状态栏正确填写。
from tqdm.auto import tqdm
from joblib import Parallel
class ProgressParallel(Parallel):
def __init__(self, use_tqdm=True, total=None, *args, **kwargs):
self._use_tqdm = use_tqdm
self._total = total
super().__init__(*args, **kwargs)
def __call__(self, *args, **kwargs):
with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar:
return Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
if self._total is None:
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()
如上所述,仅包装传递的可迭代对象的解决方案joblib.Parallel()
并不能真正监控执行进度。相反,我建议继承Parallel
并覆盖该print_progress()
方法,如下所示:
import joblib
from tqdm.auto import tqdm
class ProgressParallel(joblib.Parallel):
def __call__(self, *args, **kwargs):
with tqdm() as self._pbar:
return joblib.Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()
这是可能的解决方法
def func(x):
time.sleep(random.randint(1, 10))
return x
def text_progessbar(seq, total=None):
step = 1
tick = time.time()
while True:
time_diff = time.time()-tick
avg_speed = time_diff/step
total_str = 'of %n' % total if total else ''
print('step', step, '%.2f' % time_diff,
'avg: %.2f iter/sec' % avg_speed, total_str)
step += 1
yield next(seq)
all_bar_funcs = {
'tqdm': lambda args: lambda x: tqdm(x, **args),
'txt': lambda args: lambda x: text_progessbar(x, **args),
'False': lambda args: iter,
'None': lambda args: iter,
}
def ParallelExecutor(use_bar='tqdm', **joblib_args):
def aprun(bar=use_bar, **tq_args):
def tmp(op_iter):
if str(bar) in all_bar_funcs.keys():
bar_func = all_bar_funcs[str(bar)](tq_args)
else:
raise ValueError("Value %s not supported as bar type"%bar)
return Parallel(**joblib_args)(bar_func(op_iter))
return tmp
return aprun
aprun = ParallelExecutor(n_jobs=5)
a1 = aprun(total=25)(delayed(func)(i ** 2 + j) for i in range(5) for j in range(5))
a2 = aprun(total=16)(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
a2 = aprun(bar='txt')(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
a2 = aprun(bar=None)(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
如果您的问题由许多部分组成,您可以将这些部分拆分为k
子组,并行运行每个子组并更新其间的进度k
条,从而更新进度。
这在文档中的以下示例中得到了演示。
>>> with Parallel(n_jobs=2) as parallel:
... accumulator = 0.
... n_iter = 0
... while accumulator < 1000:
... results = parallel(delayed(sqrt)(accumulator + i ** 2)
... for i in range(5))
... accumulator += sum(results) # synchronization barrier
... n_iter += 1
https://pythonhosted.org/joblib/parallel.html#reusing-a-pool-of-workers