0

我试图了解 NTRU-PKCS 并想在 Java 中实现一个简单的版本,因此我使用了一种自我实现的方法(扩展 euclid)来计算环中多项式的逆。

大多数时候我的算法都有效,但是当我尝试 NTRU-PKCS-Tutorial PKCS-Tutorial 中的示例时,它失败了,我不知道为什么。

示例是:

f: -x^10+1x^9+0x^8+0x^7+1x^6+0x^5-x^4+0x^3+1x^2+1x^1-x^0 f^-1模 32:30x^10+18x^9+20x^8+22x^7+16x^6+15x^5+4x^4+16x^3+6x^2+9x^1+5x^0 环:x^ 11-1

我的代码是:

public PolynomialMod inverse(int N, int mod) {
    int loop = 0;
    PolynomialMod G = PolynomialMod.ZERO.clone();
    G.setNMod(N, mod);
    PolynomialMod newG = (PolynomialMod) PolynomialMod.ONE.clone();
    newG.setNMod(N, mod);
    int[] coeffR = { 1, 1, 0, 1, 1, 0, 0, 0, 1 };

    PolynomialMod quotient = null;
    PolynomialMod newR = this.clone();
    PolynomialMod R = this.getRing(N, mod);
    R.setNMod(N, mod);
    newR.setNMod(N, mod);

    while (!newR.equalsZero()) {
        if (DEBUG && loop != 0)
            System.out.println("loop: " + loop);
        if (DEBUG && loop == 0)
            System.out.println("========Initial Values========");
        if (DEBUG)
            System.out.println("R   : " + R);
        if (DEBUG)
            System.out.println("newR: " + newR);
        if (DEBUG)
            System.out.println("Quotient: " + quotient);
        if (DEBUG)
            System.out.println("G   : " + G);
        if (DEBUG)
            System.out.println("newG: " + newG);
        if (DEBUG && loop == 0)
            System.out.println("========Initial Values========");
        if (DEBUG)
            System.out.println("\n");

        quotient = R.div(newR)[0];
        PolynomialMod help = R.clone();
        R = newR.clone();
        PolynomialMod times = quotient.times(newR);
        times.reduceBetweenZeroAndQ();
        newR = help.sub(times);
        newR.deleteLeadingZeros();
        newR.degree = newR.values.size() - 1;
        help = G.clone();
        G = newG.clone();
        PolynomialMod times2 = quotient.times(newG);
        times2.reduceBetweenZeroAndQ();
        newG = help.sub(times2);
        loop++;

    }
    if (R.getDegree() > 0)
        throw new ArithmeticException("irreducible or multiple");

    return G.div(R)[0];
}

输出如下:

========Initial Values========
R   : [ -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]
newR: [ -1, 1, 1, 0, -1, 0, 1, 0, 0, 1, -1 ]
Quotient: null
G   : [ 0 ]
newG: [ 1 ]
========Initial Values========


loop: 1
R   : [ -1, 1, 1, 0, -1, 0, 1, 0, 0, 1, -1 ]
newR: [ 30, 0, 2, 1, 31, 31, 1, 1, 0, 1 ]
Quotient: [ 31, 31 ]
G   : [ 1 ]
newG: [ 1, 1 ]


loop: 2
R   : [ 30, 0, 2, 1, 31, 31, 1, 1, 0, 1 ]
newR: [ 1, 31, 31, 1, 1, 0, 31, 0, 1 ]
Quotient: [ 1, 31 ]
G   : [ 1, 1 ]
newG: [ 0, 0, 1 ]


loop: 3
R   : [ 1, 31, 31, 1, 1, 0, 31, 0, 1 ]
newR: [ 30, 31, 3, 2, 30, 30, 1, 2 ]
Quotient: [ 0, 1 ]
G   : [ 0, 0, 1 ]
newG: [ 1, 1, 0, 31 ]

问题是:如果我现在计算 R/newR,我必须找到 2 mod 32 的倒数,但是由于 32 和 2 的最大公约数是 2 而不是 1,所以没有倒数...

我是否错误地执行了算法?

4

1 回答 1

0

问题解决了:它不是欧几里得环,所以我必须计算逆模 2,然后将其提升到模 32...

这个怎么运作

于 2016-06-27T10:40:16.090 回答