我正在尝试遵循 Deep Autoencoder Keras示例。我遇到了尺寸不匹配异常,但对于我的生活,我无法弄清楚为什么。它在我只使用一个编码维度时有效,但在我堆叠它们时无效。
例外:输入 0 与图层 dense_18 不兼容:
预期形状 =(无,128),找到形状 =(无,32)*
错误在线decoder = Model(input=encoded_input, output=decoder_layer(encoded_input))
from keras.layers import Dense,Input
from keras.models import Model
import numpy as np
# this is the size of the encoded representations
encoding_dim = 32
#NPUT LAYER
input_img = Input(shape=(784,))
#ENCODE LAYER
# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim*4, activation='relu')(input_img)
encoded = Dense(encoding_dim*2, activation='relu')(encoded)
encoded = Dense(encoding_dim, activation='relu')(encoded)
#DECODED LAYER
# "decoded" is the lossy reconstruction of the input
decoded = Dense(encoding_dim*2, activation='relu')(encoded)
decoded = Dense(encoding_dim*4, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
#MODEL
autoencoder = Model(input=input_img, output=decoded)
#SEPERATE ENCODER MODEL
encoder = Model(input=input_img, output=encoded)
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]
# create the decoder model
decoder = Model(input=encoded_input, output=decoder_layer(encoded_input))
#COMPILER
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')