我为此编写了自己的模块。我叫它cute_profile
。这是代码。这是测试。
这是解释如何使用它的博客文章。
它是GarlicSim的一部分,所以如果你想使用它,你可以安装garlicsim
并执行from garlicsim.general_misc import cute_profile
.
如果你想在 Python 3 代码上使用它,只需安装garlicsim
.
这是代码的过时摘录:
import functools
from garlicsim.general_misc import decorator_tools
from . import base_profile
def profile_ready(condition=None, off_after=True, sort=2):
'''
Decorator for setting a function to be ready for profiling.
For example:
@profile_ready()
def f(x, y):
do_something_long_and_complicated()
The advantages of this over regular `cProfile` are:
1. It doesn't interfere with the function's return value.
2. You can set the function to be profiled *when* you want, on the fly.
How can you set the function to be profiled? There are a few ways:
You can set `f.profiling_on=True` for the function to be profiled on the
next call. It will only be profiled once, unless you set
`f.off_after=False`, and then it will be profiled every time until you set
`f.profiling_on=False`.
You can also set `f.condition`. You set it to a condition function taking
as arguments the decorated function and any arguments (positional and
keyword) that were given to the decorated function. If the condition
function returns `True`, profiling will be on for this function call,
`f.condition` will be reset to `None` afterwards, and profiling will be
turned off afterwards as well. (Unless, again, `f.off_after` is set to
`False`.)
`sort` is an `int` specifying which column the results will be sorted by.
'''
def decorator(function):
def inner(function_, *args, **kwargs):
if decorated_function.condition is not None:
if decorated_function.condition is True or \
decorated_function.condition(
decorated_function.original_function,
*args,
**kwargs
):
decorated_function.profiling_on = True
if decorated_function.profiling_on:
if decorated_function.off_after:
decorated_function.profiling_on = False
decorated_function.condition = None
# This line puts it in locals, weird:
decorated_function.original_function
base_profile.runctx(
'result = '
'decorated_function.original_function(*args, **kwargs)',
globals(), locals(), sort=decorated_function.sort
)
return locals()['result']
else: # decorated_function.profiling_on is False
return decorated_function.original_function(*args, **kwargs)
decorated_function = decorator_tools.decorator(inner, function)
decorated_function.original_function = function
decorated_function.profiling_on = None
decorated_function.condition = condition
decorated_function.off_after = off_after
decorated_function.sort = sort
return decorated_function
return decorator