我正在做一个项目,我需要计算 gridsearch 返回的最佳估计量。
parameters = {'gamma':[0.1, 0.5, 1, 10, 100], 'C':[1, 5, 10, 100, 1000]}
# TODO: Initialize the classifier
svr = svm.SVC()
# TODO: Make an f1 scoring function using 'make_scorer'
f1_scorer = make_scorer(score_func)
# TODO: Perform grid search on the classifier using the f1_scorer as the scoring method
grid_obj = grid_search.GridSearchCV(svr, parameters, scoring=f1_scorer)
# TODO: Fit the grid search object to the training data and find the optimal parameters
grid_obj = grid_obj.fit(X_train, y_train)
pred = grid_obj.predict(X_test)
def score_func():
f1_score(y_test, pred, pos_label='yes')
# Get the estimator
clf = grid_obj.best_estimator_
我不确定如何使 f1_scorer 函数发挥作用,因为我在创建 gridsearch 对象后进行了预测。创建 obj 后我无法声明 f1_scorer,因为 gridsearch 使用它作为评分方法。请帮助我如何为网格搜索创建这个评分函数。