我试图理解背后的代码nnet
。当我将多项式因子拆分为二进制列而不是使用公式方法时,我目前得到不同的结果。
library(nnet)
set.seed(123)
y <- class.ind(iris$Species)
x <- as.matrix(iris[,1:4])
fit1 <- nnet(x, y, size = 3, decay = .1)
# weights: 27
#initial value 164.236516
#iter 10 value 102.567531
#iter 20 value 58.229722
#iter 30 value 39.720137
#iter 40 value 25.049530
#iter 50 value 23.671837
#iter 60 value 23.602392
#iter 70 value 23.601927
#final value 23.601926
#converged
pred1 <- predict(fit1, iris[,1:4])
rowSums(head(pred1))
[1] 1.032197661 1.033700173 1.032750746 1.034229149 1.032052937 1.032539980
set.seed(123)
fit2 <- nnet(Species ~ ., data = iris, size = 3, decay = .1)
# weights: 27
#initial value 158.508573
#iter 10 value 37.167558
#iter 20 value 26.815839
#iter 30 value 23.746418
#iter 40 value 23.698182
#iter 50 value 23.697907
#final value 23.697907
#converged
pred2 <- predict(fit2, iris[,1:4])
rowSums(head(pred2))
1 2 3 4 5 6
1 1 1 1 1 1
我知道我可以只使用后一种方法(formula
方法),但我想了解为什么在源代码中出现相同的分解因子方法时结果会有所不同nnet.formula
。