我有一些相当繁忙的芹菜队列,但不确定哪些任务是有问题的。有没有办法汇总结果以确定哪些任务需要很长时间?我在 2-4 台服务器上有 10-20 名工作人员。
使用 redis 作为代理和结果后端。我注意到 Flower 上的队列很忙,但不知道如何汇总每个任务的时间统计信息。
我有一些相当繁忙的芹菜队列,但不确定哪些任务是有问题的。有没有办法汇总结果以确定哪些任务需要很长时间?我在 2-4 台服务器上有 10-20 名工作人员。
使用 redis 作为代理和结果后端。我注意到 Flower 上的队列很忙,但不知道如何汇总每个任务的时间统计信息。
方法一:
如果您在启动 celery worker 时启用了日志记录,它们会记录每个任务所花费的时间。
$ celery worker -l info -A your_app --logfile celery.log
这将生成这样的日志
[2016-06-04 13:21:30,749: INFO/MainProcess] Task sig.add[a8b648eb-9674-44f0-90bd-71cfebe22f2f] succeeded in 0.00979363399983s: 3
[2016-06-04 13:21:30,973: INFO/MainProcess] Received task: sig.add[7fd422e6-8f48-4dd2-90de-e213afbedc38]
[2016-06-04 13:21:30,982: WARNING/Worker-2] called by small_task. LOL {'signal': <Signal: Signal>, 'result': 3, 'sender': <@task: sig.add of tasks:0x7fdf33146c50>}
您可以过滤具有succeeded in
. 使用,
[
,作为分隔符拆分这些行:
,打印任务名称和每个任务花费的时间,然后对所有行进行排序。
$ grep ' succeeded in ' celery.log | awk -F'[ :\[]' '{print $9, $13}' | sort
awk: warning: escape sequence `\[' treated as plain `['
sig.add 0.00775764500031s
sig.add 0.00802627899975s
sig.foo 12.00813863099938s
sig.foo 15.00871706100043s
sig.foo 12.00979363399983s
如您所见add
,速度非常快且速度很foo
慢。
方法二:
Celery 具有在任务之前/之后运行task_prerun_handler
的信号。task_postrun_handler
您可以连接将跟踪时间的功能,然后在某处记录时间。
from time import time
from celery.signals import task_prerun, task_postrun
tasks = {}
task_avg_time = {}
Average = namedtuple('Average', 'cum_avg count')
@task_prerun.connect
def task_prerun_handler(signal, sender, task_id, task, args, kwargs):
tasks[task_id] = time()
@task_postrun.connect
def task_postrun_handler(signal, sender, task_id, task, args, kwargs, retval, state):
try:
cost = time() - tasks.pop(task_id)
except KeyError:
cost = None
if not cost:
return
try:
cum_avg, count = task_avg_time[task.name]
new_count = count + 1
new_avg = ((cum_avg * count) + cost) / new_count
task_avg_time[task.name] = Average(new_avg, new_count)
except KeyError:
task_avg_time[task.name] = Average(cost, 1)
# write to redis: task_avg_time