我正在寻找一种方法来网格搜索 sklearn 中的超参数,而不使用 K 折验证。即,我希望我的网格在特定数据集(下例中的 X1,y1)上进行训练,并在特定的保留数据集(下例中的 X2,y2)上验证自己。
X1,y2 = 训练数据
X2,y2 = 验证数据
clf_ = SVC(kernel='rbf',cache_size=1000)
Cs = [1,10.0,50,100.0,]
Gammas = [ 0.4,0.42,0.44,0.46,0.48,0.5,0.52,0.54,0.56]
clf = GridSearchCV(clf_,dict(C=Cs,gamma=Gammas),
cv=???, # validate on X2,y2
n_jobs=8,verbose=10)
clf.fit(X1, y1)