我正在尝试找到一种方法来解决具有以下特征的图的最长路径问题:
- 导演
- 加权(包括负权重)
- 不是无环的,虽然我只是在寻找简单的路径。
在过去的两天里,我第一次看了一下 Boost.Graph。它看起来很复杂,我想确保在深入研究文档以发现我实际上无法使用它之前,我可以用这个库解决我的问题。
那么我可以使用 Boost.Graph 来解决我的问题吗?它甚至可能是NP-Complete吗?即使我可以使用 Boost.Graph,是否有更好的基于性能的替代方案?
我正在尝试找到一种方法来解决具有以下特征的图的最长路径问题:
在过去的两天里,我第一次看了一下 Boost.Graph。它看起来很复杂,我想确保在深入研究文档以发现我实际上无法使用它之前,我可以用这个库解决我的问题。
那么我可以使用 Boost.Graph 来解决我的问题吗?它甚至可能是NP-Complete吗?即使我可以使用 Boost.Graph,是否有更好的基于性能的替代方案?
这是一些使用 boost 图形库的代码来查找图形中两个顶点之间的最长(权重最大)路径。通过删除图形副本中的后边缘来检查图形是否存在循环。
此代码的重构和记录版本可从位于https://chiselapp.com/user/ravenspoint/repository/longest_path/dir?ci=tip的公共化石存储库中获得
#include <iostream>
#include <random>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/bellman_ford_shortest_paths.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/depth_first_search.hpp>
using namespace std;
using namespace boost;
class cVertex
{
};
class cEdge
{
public:
void Weight( int w )
{
myWeight = w;
}
int Weight()
{
return myWeight;
}
void negWeight()
{
myWeight = - myWeight;
}
int myWeight;
};
typedef adjacency_list<
vecS, vecS, directedS,
cVertex, cEdge > graph_t;
typedef graph_traits< graph_t >::vertex_iterator vit_t;
typedef graph_traits< graph_t >::edge_iterator eit_t;
typedef graph_traits< graph_t >::edge_descriptor ed_t;
graph_t theGraph;
class cPredecessorMap
{
public:
cPredecessorMap(graph_t& g )
: myGraph( g )
{
p.resize( num_vertices(myGraph) );
}
vector<int>::iterator
begin()
{
return p.begin();
}
vector<int>
Path( int start, int end )
{
vector<int> path ;
int next = end;
while ( next != start )
{
path.push_back( next );
next = p[ next ];
}
path.push_back( start );
// reverse into path from to
reverse(path.begin(),path.end());
return path;
}
private:
graph_t& myGraph;
vector<int> p;
};
void Add( int src, int dst, int weight )
{
theGraph[add_edge( src, dst, theGraph ).first].Weight( weight );
}
void Construct()
{
std::random_device rd;
std::mt19937_64 gen(rd());
std::uniform_int_distribution<int> dis(0,9);
for( int kvertex = 0; kvertex < 10; kvertex++ )
add_vertex( theGraph );
// connect successive vertices with random weights
for( int kvertex = 1; kvertex < 10; kvertex++ )
Add( kvertex-1, kvertex, dis( gen ) );
// connect random edges
for( int krandom = 0; krandom < 3; krandom++ )
{
int v1, v2;
do
{
v1 = dis(gen);
v2 = dis(gen);
}
while( v1 == v2 );
if( v1 > v2 )
{
int tmp;
tmp = v1;
v1 = v2;
v2 = tmp;
}
Add( dis(gen), dis(gen), dis( gen ));
}
}
void Construct2()
{
for( int kvertex = 0; kvertex < 3; kvertex++ )
add_vertex( theGraph );
Add( 0, 1, 1 );
Add( 0, 2, 2 );
Add( 1, 2, 3 );
}
void ConstructWithCycle()
{
for( int kvertex = 0; kvertex < 10; kvertex++ )
add_vertex( theGraph );
// connect successive vertices with random weights
for( int kvertex = 1; kvertex < 10; kvertex++ )
Add( kvertex-1, kvertex, 1 );
Add( 6, 4, 1 );
Add( 7, 3, 1 );
}
void DisplayEdges()
{
graph_traits<graph_t>::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(theGraph); ei != ei_end; ++ei)
{
std::cout << "(" << source(*ei, theGraph)
<< "," << target(*ei, theGraph)
<< ", w= " << theGraph[ *ei ].Weight()
<< " )\n ";
}
std::cout << std::endl;
}
bool TopSort()
{
try
{
std::vector< int > c;
topological_sort(theGraph, std::back_inserter(c));
}
catch( not_a_dag )
{
cout << "not a dag\n";
return false;
}
cout << "top sort OK\n";
return true;
}
/* Find longest path through the graph
@param[in] g the graph
@param[in] start vertex
@param[in] end vertex
@param[out] path of vertices
@param[out] dist length of path
*/
void Longest(
graph_t& g,
int start,
int end,
vector<int>& path,
int& dist )
{
// create copy of graph with negative weights
graph_t negGraph = g;
graph_traits<graph_t>::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(negGraph); ei != ei_end; ++ei)
{
negGraph[ *ei ].negWeight( );
}
// find shortest paths through negative weight graph
int N = num_vertices(negGraph);
cPredecessorMap pmap( theGraph );
vector<int> distance(N);
bellman_ford_shortest_paths(
negGraph,
N,
weight_map(get(&cEdge::myWeight, negGraph))
.predecessor_map(make_iterator_property_map(pmap.begin(), get(vertex_index, negGraph)))
.distance_map(&distance[0])
.root_vertex( start )
);
path = pmap.Path(start,end);
dist = - distance[ end ];
}
class dag_visitor:public default_dfs_visitor
{
public:
unsigned int * src;
unsigned int * dst;
template < typename Edge, typename Graph >
void back_edge( Edge e, Graph& g)
{
*src = source( e, g );
*dst = target( e, g );
throw runtime_error("cyclic");
}
};
void ConvertToDAG( graph_t& g)
{
dag_visitor vis;
unsigned int src, dst;
vis.src = &src;
vis.dst = &dst;
bool cyclic = true;
while( cyclic )
{
try
{
depth_first_search(g, visitor(vis));
cyclic = false;
}
catch( runtime_error& e )
{
cyclic = true;
cout << "removing " << src << " -> " << dst << endl;
remove_edge( src, dst, g );
}
}
}
int main()
{
ConstructWithCycle();
// create copy to be converted to DAG
graph_t dag( theGraph );
ConvertToDAG( dag );
// find longest path from first to last vertex
vector< int > path;
int dist;
Longest( dag, 0, 9, path, dist );
DisplayEdges();
cout << "Longest path: ";
for( int v : path )
cout << v << " ";
cout << " length " << dist << endl;
return 0;
}