5

我是 caffe 框架的新手,我想使用 caffe 来实现多标签的训练。我使用两个 LMDB 分别保存数据和标签。数据 LMDB 的维度为 Nx1xHxW,而标签 LMDB 的维度为 Nx1x1x3。标签是浮点数据。

文本文件如下:

5911 3
train/train_data/4224.bmp        13         0        12
train/train_data/3625.bmp        11         3         7
...                              ...

我使用 C++ 创建 LMDB。我的 main.cpp:

#include <algorithm>
#include <fstream>  // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include <QImage>

#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"

#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/rng.hpp"

#include <boost/filesystem.hpp>
#include <iomanip>
#include <iostream>  // NOLINT(readability/streams)
#include <string>

#include "google/protobuf/message.h"

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/format.hpp"

#ifndef CAFFE_TMP_DIR_RETRIES
#define CAFFE_TMP_DIR_RETRIES 100
#endif

using namespace caffe;  // NOLINT(build/namespaces)
using std::pair;
using boost::scoped_ptr;

const char *dat_lab="/home/mul/caffe-master/examples/2D_3D/new/info/train.data";
string data_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_data_leveldb";
string label_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_label_leveldb";
string root="/home/mul/caffe-master/examples/2D_3D/new/";
string path;

int main()
{

    //Create data DB
    scoped_ptr<db::DB> dat_db(db::GetDB("leveldb"));
    dat_db->Open(data_db, db::NEW);
    scoped_ptr<db::Transaction> dat_txn(dat_db->NewTransaction());

    //Create label DB
    scoped_ptr<db::DB> lab_db(db::GetDB("leveldb"));
    lab_db->Open(label_db, db::NEW);
    scoped_ptr<db::Transaction> lab_txn(lab_db->NewTransaction());

    //Storing to db
    Datum dat_datum,lab_datum;
    int count=0;

    std::ifstream infile(dat_lab);
    std::string filename;
    const char *dataname;
    int dataNum;
    int labelcount;
    QImage img;
    infile>>dataNum>>labelcount;
    LOG(INFO) << "A total of " << dataNum<< " images.";

    for (int line_id = 0; line_id < dataNum; ++line_id)
    {
        infile>>filename;
        path=root+filename;
        dataname=path.c_str();
        img.load(dataname);

        dat_datum.set_channels(1);
        dat_datum.set_height(img.height());
        dat_datum.set_width(img.width());
        dat_datum.clear_data();
        dat_datum.clear_float_data();

        int datum_channels = dat_datum.channels();
        int datum_height = dat_datum.height();
        int datum_width = dat_datum.width();
        int datum_size = datum_channels * datum_height * datum_width;
        std::string buffer(datum_size, ' ');
        const uchar* ptr = img.bits();
        int img_index = 0;
        for (int h = 0; h < datum_height; ++h)
        {

            for (int w = 0; w < datum_width; ++w)
            {
                for (int c = 0; c < datum_channels; ++c)
                {
                    int datum_index = (c * datum_height + h) * datum_width + w;
                    buffer[datum_index] = static_cast<char>(ptr[img_index++]);
                }
            }
        }
        dat_datum.set_data(buffer);


        lab_datum.set_channels(labelcount);
        lab_datum.set_height(1);
        lab_datum.set_width(1);
        lab_datum.clear_data();
        lab_datum.clear_float_data();
        for(int i=0;i<labelcount;++i)
        {
            float mid;
            infile>>mid;
            lab_datum.add_float_data(mid);
        }

        // sequential
        string key_str = caffe::format_int(line_id, 8);

        // Put in db
        string out;
        CHECK(dat_datum.SerializeToString(&out));
        dat_txn->Put(key_str, out);
        CHECK(lab_datum.SerializeToString(&out));
        lab_txn->Put(key_str, out);

        if (++count % 1000 == 0)
        {
            // Commit db
            dat_txn->Commit();
            dat_txn.reset(dat_db->NewTransaction());
            lab_txn->Commit();
            lab_txn.reset(lab_db->NewTransaction());
            LOG(INFO) << "Processed " << count << " files.";
        }
    }
    // write the last batch
    if (count % 1000 != 0)
    {
        dat_txn->Commit();
        lab_txn->Commit();
        LOG(INFO) << "Processed " << count << " files.";
    }
    return 0;
}

可以成功创建两个LMDB。但是当我用caffe用两个LMDB来实现训练的时候,结果总是错的。损失层是EUCLIDEAN_LOSS,损失不能下降。我不知道可以创建两个LMDB的代码是否错误。谁能帮我 ?无论如何谢谢。

4

1 回答 1

2

总的来说,你上面的代码是好的,但你应该注意到:

  1. 您的 .cpp 是创建 LEVELDB 而不是 LMDB,当然这不是导致您的问题的原因,任何一种类型都可以。
  2. 您的代码生成的“标签 LMDB”的尺寸为 Nx3x1x1,而不是 Nx1x1x3(NumberxChannelxWidthxHeight)。
  3. 据我所知,在使用 minibatch SGD 的学习任务中,将数据打乱以进行训练以获得更优化的模型非常有用。我不确定你是否注意到了这一点。但至少你的 cpp 没有洗牌你的“train.data”。
  4. 最重要的是,这里导致您的问题的原因很可能在于您的网络中的数据层,它读取您的数据并标记 lmdb/leveldb 文件,因为您将标签分配给 datum 的浮点数据和 caffe 中的 DataLayer事实上不读取浮点数据(仅当您使用自定义数据层时)。因此,请同时上传定义网络的 prototxt 文件。因此,我们可以找出真正的问题所在。

最后,我添加了一个“MultiTaskData”层MultiTaskDataLayer来从数据中读取多标签以进行多任务训练,您可以进行简单的修改以将其添加到您的 caffe 并像这样使用:

    name: "AgeNet"
    layer {
        name: "Age"
        type: "MultiTaskData"
        top: "data"
        top: "age_label"
        top: "gender_label"
        data_param { 
            source: "age_gender_classification_0_60p_train_leveldb"   
            batch_size: 60 
            task_num: 2
            label_dimension: 1
            label_dimension: 1
        }
        transform_param {
            scale: 0.00390625
            crop_size: 60
            mirror: true
        }
        include:{ phase: TRAIN }
    }
    layer { 
        name: "cls_age" 
        type: "InnerProduct"
        bottom: "data"  
        top: "cls_age" 
        param {
            lr_mult: 1
            decay_mult: 1
        }
        param {
            lr_mult: 2
            decay_mult: 0
        }
        inner_product_param {
            num_output: 7
            weight_filler {
            type: "xavier"
            }    
        bias_filler {      
            type: "constant"
            }  
        }
    }
    layer {  
        name: "age_loss"  
        type: "SoftmaxWithLoss"  
        bottom: "cls_age" 
        bottom: "age_label"
        top: "age_loss"
        include:{ phase: TRAIN }
    }
    layer { 
        name: "cls_gender" 
        type: "InnerProduct"
        bottom: "data"  
        top: "cls_gender" 
        param {
            lr_mult: 1
            decay_mult: 1
        }
        param {
            lr_mult: 2
            decay_mult: 0
        }
        inner_product_param {
            num_output: 2
            weight_filler {
                type: "xavier"
            }    
            bias_filler {      
                type: "constant"
            }  
        }
    }
    layer {  
        name: "gender_loss"  
        type: "SoftmaxWithLoss"  
        bottom: "cls_gender" 
        bottom: "gender_label"
        top: "gender_loss"
        include:{ phase: TRAIN }
    }
于 2016-05-17T14:15:53.570 回答