3

我正在尝试模仿 Excel 的

插入>散点图>带有平滑线和标记的散点图

Matplotlib 中的命令

scipy 函数interpolate产生了类似的效果,这里有一些很好的例子来说明如何简单地实现它: 如何在 matplotlib 中绘制三次样条曲线

然而,Excel 的样条算法也能够仅通过三个点生成平滑曲线(例如 x = [0,1,2] y = [4,2,1]);并且不可能用三次样条来做到这一点。

我看到讨论建议 Excel 算法使用 Catmull-Rom 样条;但不太了解这些,或者它们如何适应 Matplotlib: http ://answers.microsoft.com/en-us/office/forum/office_2007-excel/how-does-excel-plot-smooth-curves /c751e8ff-9f99-4ac7-a74a-fba41ac80300

是否有一种简单的方法可以使用interpolate库修改上述示例以通过三个或更多点实现平滑曲线?

非常感谢

4

2 回答 2

4

到目前为止,您可能已经找到了Centripetal Catmull-Rom spline的 Wikipedia 页面,但如果您还没有,它包含以下示例代码:

import numpy
import matplotlib.pyplot as plt

def CatmullRomSpline(P0, P1, P2, P3, nPoints=100):
  """
  P0, P1, P2, and P3 should be (x,y) point pairs that define the
  Catmull-Rom spline.
  nPoints is the number of points to include in this curve segment.
  """
  # Convert the points to numpy so that we can do array multiplication
  P0, P1, P2, P3 = map(numpy.array, [P0, P1, P2, P3])

  # Calculate t0 to t4
  alpha = 0.5
  def tj(ti, Pi, Pj):
    xi, yi = Pi
    xj, yj = Pj
    return ( ( (xj-xi)**2 + (yj-yi)**2 )**0.5 )**alpha + ti

  t0 = 0
  t1 = tj(t0, P0, P1)
  t2 = tj(t1, P1, P2)
  t3 = tj(t2, P2, P3)

  # Only calculate points between P1 and P2
  t = numpy.linspace(t1,t2,nPoints)

  # Reshape so that we can multiply by the points P0 to P3
  # and get a point for each value of t.
  t = t.reshape(len(t),1)

  A1 = (t1-t)/(t1-t0)*P0 + (t-t0)/(t1-t0)*P1
  A2 = (t2-t)/(t2-t1)*P1 + (t-t1)/(t2-t1)*P2
  A3 = (t3-t)/(t3-t2)*P2 + (t-t2)/(t3-t2)*P3

  B1 = (t2-t)/(t2-t0)*A1 + (t-t0)/(t2-t0)*A2
  B2 = (t3-t)/(t3-t1)*A2 + (t-t1)/(t3-t1)*A3

  C  = (t2-t)/(t2-t1)*B1 + (t-t1)/(t2-t1)*B2
  return C

def CatmullRomChain(P):
  """
  Calculate Catmull Rom for a chain of points and return the combined curve.
  """
  sz = len(P)

  # The curve C will contain an array of (x,y) points.
  C = []
  for i in range(sz-3):
    c = CatmullRomSpline(P[i], P[i+1], P[i+2], P[i+3])
    C.extend(c)

  return C

它很好地计算了n >= 4点的插值,如下所示:

points = [[0,1.5],[2,2],[3,1],[4,0.5],[5,1],[6,2],[7,3]]
c = CatmullRomChain(points)
px, py = zip(*points)
x, y = zip(*c)

plt.plot(x, y)
plt.plot(px, py, 'or')

产生此matplotlib图像:

在此处输入图像描述

更新:

或者,有一个scipy.interpolate功能BarycentricInterpolator似乎可以满足您的需求。它使用起来相当简单,适用于只有 3 个数据点的情况。

from scipy.interpolate import BarycentricInterpolator

# create some data points
points1 = [[0, 2], [1, 4], [2, -2], [3, 6], [4, 2]]
points2 = [[1, 1], [2, 5], [3, -1]]

# put data into x, y tuples
x1, y1 =zip(*points1)
x2, y2 = zip(*points2)

# create the interpolator
bci1 = BarycentricInterpolator(x1, y1)
bci2 = BarycentricInterpolator(x2, y2)

# define dense x-axis for interpolating over
x1_new = np.linspace(min(x1), max(x1), 1000)
x2_new = np.linspace(min(x2), max(x2), 1000)

# plot it all
plt.plot(x1, y1, 'o')
plt.plot(x2, y2, 'o')
plt.plot(x1_new, bci1(x1_new))
plt.plot(x2_new, bci2(x2_new))
plt.xlim(-1, 5)

在此处输入图像描述

更新 2

另一个选项scipy是通过 akima 插值Akima1DInterpolator。它与 Barycentric 一样易于实现,但具有避免数据集边缘出现大振荡的优点。以下是一些测试用例,它们展示了您迄今为止所要求的所有标准。

from scipy.interpolate import Akima1DInterpolator

x1, y1 = np.arange(13), np.random.randint(-10, 10, 13)
x2, y2 = [0,2,3,6,12], [100,50,30,18,14]
x3, y3 = [4, 6, 8], [60, 80, 40]

akima1 = Akima1DInterpolator(x1, y1)
akima2 = Akima1DInterpolator(x2, y2)
akima3 = Akima1DInterpolator(x3, y3)

x1_new = np.linspace(min(x1), max(x1), 1000)
x2_new = np.linspace(min(x2), max(x2), 1000)
x3_new = np.linspace(min(x3), max(x3), 1000)

plt.plot(x1, y1, 'bo')
plt.plot(x2, y2, 'go')
plt.plot(x3, y3, 'ro')
plt.plot(x1_new, akima1(x1_new), 'b', label='random points')
plt.plot(x2_new, akima2(x2_new), 'g', label='exponential')
plt.plot(x3_new, akima3(x3_new), 'r', label='3 points')
plt.xlim(-1, 15)
plt.ylim(-10, 110)
plt.legend(loc='best')

在此处输入图像描述

于 2016-05-14T06:45:33.223 回答
0

@Lanery:回复:更新 2:最好的变得更好!

必须将列表 x2,y2,x3,y3 重新定义为 numpy 数组才能让您的示例在我的系统上运行(Spyder / Python 2.7):

x2 = np.array([0,2,3,6,12])
y2 = np.array([100,50,30,18,14])
x3 = np.array([4, 6, 8])
y3 = np.array([60, 80, 40])

但现在像梦一样工作!非常感谢您的专业知识和清晰的解释。

于 2016-05-18T17:03:03.893 回答