我一直在使用 tflearn 编写简单的自动编码器。
net = tflearn.input_data (shape=[None, train.shape [1]])
net = tflearn.fully_connected (net, 500, activation = 'tanh', regularizer = None, name = 'fc_en_1')
#hidden state
net = tflearn.fully_connected (net, 100, activation = 'tanh', regularizer = 'L1', name = 'fc_en_2', weight_decay = 0.0001)
net = tflearn.fully_connected (net, 500, activation = 'tanh', regularizer = None, name = 'fc_de_1')
net = tflearn.fully_connected (net, train.shape [1], activation = 'linear', name = 'fc_de_2')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.01, loss='mean_square', metric='default')
model = tflearn.DNN (net)
模型训练得很好,但训练后我想分别使用编码器和解码器。
我该怎么做?现在我可以恢复输入,我希望能够将输入转换为隐藏表示并从任意隐藏表示恢复输入。