可以进行一些明显的修改以获得合理的时间(如从postag_cell
函数中删除 TreeTagger 类的导入和实例化)。然后可以并行化代码。然而,大部分工作是由treetagger本身完成的。由于我对这个软件一无所知,我不知道它是否可以进一步优化。
最小的工作代码:
import pandas as pd
import treetaggerwrapper
input_file = 'new_corpus.csv'
output_file = 'output.csv'
def postag_string(s):
'''Returns tagged text from string s'''
if isinstance(s, basestring):
s = s.decode('UTF-8')
return tagger.tag_text(s)
# Reading in the file
all_lines = []
with open(input_file) as f:
for line in f:
all_lines.append(line.strip().split('|', 1))
df = pd.DataFrame(all_lines[1:], columns = all_lines[0])
tagger = treetaggerwrapper.TreeTagger(TAGLANG='en')
df['POS-tagged_content'] = df['content'].apply(postag_string)
# Format fix:
def fix_format(x):
'''x - a list or an array'''
# With encoding:
out = list(tuple(i.encode().split('\t')) for i in x)
# or without:
# out = list(tuple(i.split('\t')) for i in x)
return out
df['POS-tagged_content'] = df['POS-tagged_content'].apply(fix_format)
df.to_csv(output_file, sep = '|')
我没有使用pd.read_csv(filename, sep = '|')
,因为您的输入文件“格式错误” - 它|
在某些文本意见中包含未转义的字符。
(更新:)格式修复后,输出文件如下所示:
$ cat output_example.csv
|id|content|POS-tagged_content
0|cv01.txt|How are you?|[('How', 'WRB', 'How'), ('are', 'VBP', 'be'), ('you', 'PP', 'you'), ('?', 'SENT', '?')]
1|cv02.txt|Hello!|[('Hello', 'UH', 'Hello'), ('!', 'SENT', '!')]
2|cv03.txt|"She said ""OK""."|"[('She', 'PP', 'she'), ('said', 'VVD', 'say'), ('""', '``', '""'), ('OK', 'UH', 'OK'), ('""', ""''"", '""'), ('.', 'SENT', '.')]"
如果格式不完全符合您的要求,我们可以解决。
并行化代码
它可能会加快速度,但不要指望奇迹。来自多进程设置的开销甚至可能超过收益。您可以试验进程数nproc
(此处,默认设置为 CPU 数;设置超过此数是低效的)。
Treetaggerwrapper 有自己的多进程类。我怀疑它与下面的代码做的事情更少,所以我没有尝试。
import pandas as pd
import numpy as np
import treetaggerwrapper
import multiprocessing as mp
input_file = 'new_corpus.csv'
output_file = 'output2.csv'
def postag_string_mp(s):
'''
Returns tagged text for string s.
"pool_tagger" is a global name, defined in each subprocess.
'''
if isinstance(s, basestring):
s = s.decode('UTF-8')
return pool_tagger.tag_text(s)
''' Reading in the file '''
all_lines = []
with open(input_file) as f:
for line in f:
all_lines.append(line.strip().split('|', 1))
df = pd.DataFrame(all_lines[1:], columns = all_lines[0])
''' Multiprocessing '''
# Number of processes can be adjusted for better performance:
nproc = mp.cpu_count()
# Function to be run at the start of every subprocess.
# Each subprocess will have its own TreeTagger called pool_tagger.
def init():
global pool_tagger
pool_tagger = treetaggerwrapper.TreeTagger(TAGLANG='en')
# The actual job done in subprcesses:
def run(df):
return df.apply(postag_string_mp)
# Splitting the input
lst_split = np.array_split(df['content'], nproc)
pool = mp.Pool(processes = nproc, initializer = init)
lst_out = pool.map(run, lst_split)
pool.close()
pool.join()
# Concatenating the output from subprocesses
df['POS-tagged_content'] = pd.concat(lst_out)
# Format fix:
def fix_format(x):
'''x - a list or an array'''
# With encoding:
out = list(tuple(i.encode().split('\t')) for i in x)
# and without:
# out = list(tuple(i.split('\t')) for i in x)
return out
df['POS-tagged_content'] = df['POS-tagged_content'].apply(fix_format)
df.to_csv(output_file, sep = '|')
更新
在 Python 3 中,默认情况下所有字符串都是 unicode,因此您可以在解码/编码方面节省一些麻烦和时间。(在下面的代码中,我还在子进程中使用纯 numpy 数组而不是数据帧——但这种变化的影响是微不足道的。)
# Python3 code:
import pandas as pd
import numpy as np
import treetaggerwrapper
import multiprocessing as mp
input_file = 'new_corpus.csv'
output_file = 'output3.csv'
''' Reading in the file '''
all_lines = []
with open(input_file) as f:
for line in f:
all_lines.append(line.strip().split('|', 1))
df = pd.DataFrame(all_lines[1:], columns = all_lines[0])
''' Multiprocessing '''
# Number of processes can be adjusted for better performance:
nproc = mp.cpu_count()
# Function to be run at the start of every subprocess.
# Each subprocess will have its own TreeTagger called pool_tagger.
def init():
global pool_tagger
pool_tagger = treetaggerwrapper.TreeTagger(TAGLANG='en')
# The actual job done in subprcesses:
def run(arr):
out = np.empty_like(arr)
for i in range(len(arr)):
out[i] = pool_tagger.tag_text(arr[i])
return out
# Splitting the input
lst_split = np.array_split(df.values[:,1], nproc)
with mp.Pool(processes = nproc, initializer = init) as p:
lst_out = p.map(run, lst_split)
# Concatenating the output from subprocesses
df['POS-tagged_content'] = np.concatenate(lst_out)
# Format fix:
def fix_format(x):
'''x - a list or an array'''
out = list(tuple(i.split('\t')) for i in x)
return out
df['POS-tagged_content'] = df['POS-tagged_content'].apply(fix_format)
df.to_csv(output_file, sep = '|')
单次运行后(因此,在统计上并不显着),我在您的文件中获得了这些时间:
$ time python2.7 treetagger_minimal.py
real 0m59.783s
user 0m50.697s
sys 0m16.657s
$ time python2.7 treetagger_mp.py
real 0m48.798s
user 1m15.503s
sys 0m22.300s
$ time python3 treetagger_mp3.py
real 0m39.746s
user 1m25.340s
sys 0m21.157s
如果 pandas 数据框的唯一用途pd
是将所有内容保存回文件,那么下一步就是从代码中删除 pandas。但同样,与 treetagger 的工作时间相比,收益微不足道。