3

我是 Caffe 的新手,它的工作流程与我之前遇到的非常不同。我之前曾在神经网络中使用过 (C++),我想使用 Caffe,因为它提供了一些额外的东西。但工作流程似乎很难适应。

我想从一个使用 PyCaffe 的简单、完全连接的 MLP 开始。我想给它一个 N 维输入向量并对其进行多标签分类。我有训练数据。所有 Caffe 示例似乎都是为图像(方阵输入)编写的。
我也更喜欢以编程方式配置网络,而不是使用大量配置文件。例如,Keras 有一种方法可以使用add().

是否可以仅使用 Python 在 Caffe 中构建一个简单的网络?

4

1 回答 1

3

您应该查看caffe.NetSpec()接口:这允许您以编程方式构建网络。例如:

from caffe import layers as L, params as P, to_proto
import caffe

ns = cafe.NetSpec()

ns.fc1 = L.InnerProduct(name='fc1', inner_product_param={'num_output':100,
                                                         'weight_filler':{'type':'xavier','std':0.1},
                                                         'bias_filler':{'type':'constant','value':0}},
                                    param=[{'lr_mult':1,'decay_mult':2},
                                           {'lr_mult':2,'decay_mult':0}])
ns.relu1 = L.ReLU(ns.fc1, inplace=True)
于 2016-05-01T06:15:29.547 回答