122

ES6 允许扩展特殊对象。所以可以从函数继承。这样的对象可以作为函数调用,但我如何实现这样的调用的逻辑呢?

class Smth extends Function {
  constructor (x) {
    // What should be done here
    super();
  }
}

(new Smth(256))() // to get 256 at this call?

类的任何方法都通过this. 但是当它作为函数调用时,this指的是window. 当它作为函数调用时,如何获取对类实例的引用?

PS:同样的问题在俄语中。

4

9 回答 9

60

super调用将调用Function构造函数,该构造函数需要一个代码字符串。如果你想访问你的实例数据,你可以硬编码它:

class Smth extends Function {
  constructor(x) {
    super("return "+JSON.stringify(x)+";");
  }
}

但这并不令人满意。我们想使用闭包。

让返回的函数成为可以访问实例变量的闭包是可能的,但并不容易。好消息是,super如果您不想调用,则不必调用 - 您仍然可以return从 ES6 类构造函数中获取任意对象。在这种情况下,我们会做

class Smth extends Function {
  constructor(x) {
    // refer to `smth` instead of `this`
    function smth() { return x; };
    Object.setPrototypeOf(smth, Smth.prototype);
    return smth;
  }
}

但是我们可以做得更好,并将这个东西抽象出来Smth

class ExtensibleFunction extends Function {
  constructor(f) {
    return Object.setPrototypeOf(f, new.target.prototype);
  }
}

class Smth extends ExtensibleFunction {
  constructor(x) {
    super(function() { return x; }); // closure
    // console.log(this); // function() { return x; }
    // console.log(this.prototype); // {constructor: …}
  }
}
class Anth extends ExtensibleFunction {
  constructor(x) {
    super(() => { return this.x; }); // arrow function, no prototype object created
    this.x = x;
  }
}
class Evth extends ExtensibleFunction {
  constructor(x) {
    super(function f() { return f.x; }); // named function
    this.x = x;
  }
}

诚然,这在继承链中创建了额外的间接级别,但这不一定是坏事(您可以扩展它而不是 native Function)。如果你想避免它,请使用

function ExtensibleFunction(f) {
  return Object.setPrototypeOf(f, new.target.prototype);
}
ExtensibleFunction.prototype = Function.prototype;

但请注意,Smth不会动态继承静态Function属性。

于 2016-04-26T17:12:12.373 回答
37

这是一种创建可调用对象的方法,这些对象可以正确引用其对象成员,并保持正确的继承,而不会弄乱原型。

简单地:

class ExFunc extends Function {
  constructor() {
    super('...args', 'return this.__self__.__call__(...args)')
    var self = this.bind(this)
    this.__self__ = self
    return self
  }

  // Example `__call__` method.
  __call__(a, b, c) {
    return [a, b, c];
  }
}

扩展这个类并添加一个__call__方法,更多内容如下...

代码和注释中的解释:

// This is an approach to creating callable objects
// that correctly reference their own object and object members,
// without messing with prototypes.

// A Class that extends Function so we can create
// objects that also behave like functions, i.e. callable objects.
class ExFunc extends Function {
  constructor() {
    super('...args', 'return this.__self__.__call__(...args)');
    // Here we create a function dynamically using `super`, which calls
    // the `Function` constructor which we are inheriting from. Our aim is to create
    // a `Function` object that, when called, will pass the call along to an internal
    // method `__call__`, to appear as though the object is callable. Our problem is
    // that the code inside our function can't find the `__call__` method, because it
    // has no reference to itself, the `this` object we just created.
    // The `this` reference inside a function is called its context. We need to give
    // our new `Function` object a `this` context of itself, so that it can access
    // the `__call__` method and any other properties/methods attached to it.
    // We can do this with `bind`:
    var self = this.bind(this);
    // We've wrapped our function object `this` in a bound function object, that
    // provides a fixed context to the function, in this case itself.
    this.__self__ = self;
    // Now we have a new wrinkle, our function has a context of our `this` object but
    // we are going to return the bound function from our constructor instead of the
    // original `this`, so that it is callable. But the bound function is a wrapper
    // around our original `this`, so anything we add to it won't be seen by the
    // code running inside our function. An easy fix is to add a reference to the
    // new `this` stored in `self` to the old `this` as `__self__`. Now our functions
    // context can find the bound version of itself by following `this.__self__`.
    self.person = 'Hank'
    return self;
  }
  
  // An example property to demonstrate member access.
  get venture() {
    return this.person;
  }
  
  // Override this method in subclasses of ExFunc to take whatever arguments
  // you want and perform whatever logic you like. It will be called whenever
  // you use the obj as a function.
  __call__(a, b, c) {
    return [this.venture, a, b, c];
  }
}

// A subclass of ExFunc with an overridden __call__ method.
class DaFunc extends ExFunc {
  constructor() {
    super()
    this.a = 'a1'
    this.b = 'b2'
    this.person = 'Dean'
  }

  ab() {
    return this.a + this.b
  }
  
  __call__(ans) {
    return [this.ab(), this.venture, ans];
  }
}

// Create objects from ExFunc and its subclass.
var callable1 = new ExFunc();
var callable2 = new DaFunc();

// Inheritance is correctly maintained.
console.log('\nInheritance maintained:');
console.log(callable2 instanceof Function);  // true
console.log(callable2 instanceof ExFunc);  // true
console.log(callable2 instanceof DaFunc);  // true

// Test ExFunc and its subclass objects by calling them like functions.
console.log('\nCallable objects:');
console.log( callable1(1, 2, 3) );  // [ 'Hank', 1, 2, 3 ]
console.log( callable2(42) );  // [ 'a1b2', Dean', 42 ]

// Test property and method access
console.log(callable2.a, callable2.b, callable2.ab())

在 repl.it 上查看

进一步解释bind

function.bind()工作起来很像function.call(),并且它们共享相似的方法签名:

fn.call(this, arg1, arg2, arg3, ...);更多关于mdn

fn.bind(this, arg1, arg2, arg3, ...);更多关于mdn

在这两个中,第一个参数重新定义了this函数内部的上下文。其他参数也可以绑定到一个值。但是 wherecall立即使用绑定值调用函数,bind返回一个“异国情调”的函数对象,该对象透明地包装原始的,this以及任何预设的参数。

所以当你定义一个函数时bind,它的一些参数:

var foo = function(a, b) {
  console.log(this);
  return a * b;
}

foo = foo.bind(['hello'], 2);

您只使用剩余的参数调用绑定函数,它的上下文是预设的,在本例中为['hello'].

// We pass in arg `b` only because arg `a` is already set.
foo(2);  // returns 4, logs `['hello']`
于 2016-11-30T01:19:11.183 回答
23

您可以将 Smth 实例包装在带有(并且可能)陷阱的Proxy中:applyconstruct

class Smth extends Function {
  constructor (x) {
    super();
    return new Proxy(this, {
      apply: function(target, thisArg, argumentsList) {
        return x;
      }
    });
  }
}
new Smth(256)(); // 256
于 2016-04-26T17:18:35.400 回答
4

更新:

不幸的是,这并不完全有效,因为它现在返回的是一个函数对象而不是一个类,所以看起来这实际上不能在不修改原型的情况下完成。瘸。


基本上问题是没有办法为构造函数设置this值。Function真正做到这一点的唯一方法是.bind事后使用该方法,但这对类不是很友好。

我们可以在辅助基类中执行此操作,但是this在初始调用之后才可用super,因此有点棘手。

工作示例:

'use strict';

class ClassFunction extends function() {
    const func = Function.apply(null, arguments);
    let bound;
    return function() {
        if (!bound) {
            bound = arguments[0];
            return;
        }
        return func.apply(bound, arguments);
    }
} {
    constructor(...args) {
        (super(...args))(this);
    }
}

class Smth extends ClassFunction {
    constructor(x) {
        super('return this.x');
        this.x = x;
    }
}

console.log((new Smth(90))());

(示例需要现代浏览器或node --harmony.)

基本上,基本函数extends 将使用类似于的自定义函数ClassFunction包装构造函数调用,但允许稍后在第一次调用时绑定。然后在构造函数本身中,它调用返回的函数,现在是绑定函数,传递完成自定义绑定函数的设置。Function.bindClassFunctionsuperthis

(super(...))(this);

这一切都相当复杂,但它确实避免了改变原型,出于优化原因,这被认为是错误的形式,并且可能在浏览器控制台中生成警告。

于 2016-04-26T18:38:36.240 回答
3

我从 Bergi 的回答中得到了建议,并将其包装到NPM 模块中。

var CallableInstance = require('callable-instance');

class ExampleClass extends CallableInstance {
  constructor() {
    // CallableInstance accepts the name of the property to use as the callable
    // method.
    super('instanceMethod');
  }

  instanceMethod() {
    console.log("instanceMethod called!");
  }
}

var test = new ExampleClass();
// Invoke the method normally
test.instanceMethod();
// Call the instance itself, redirects to instanceMethod
test();
// The instance is actually a closure bound to itself and can be used like a
// normal function.
test.apply(null, [ 1, 2, 3 ]);
于 2016-10-30T08:41:18.497 回答
2

概括Oriol 的答案

class Smth extends Function {
  constructor(x) {
    super();

    this.x = x;

    return new Proxy(this, {
      apply: (target, that, args) => target.__call__(...args)
    });
  }

  __call__(v) {
    return this.x * v;
  }
}
于 2021-04-26T17:34:58.220 回答
2

这是我制定的解决方案,可以满足我扩展功能的所有需求,并且为我提供了很好的服务。这种技术的好处是:

  • 扩展ExtensibleFunction时,代码是扩展任何 ES6 类的惯用代码(不,与假装的构造函数或代理混在一起)。
  • 原型链通过所有子类保留,并instanceof/.constructor返回预期值。
  • .bind() .apply()并且.call()所有功能都按预期进行。这是通过重写这些方法来改变“内部”函数的上下文而不是ExtensibleFunction(或它的子类)实例来完成的。
  • .bind()返回函数构造函数的新实例(无论是它ExtensibleFunction还是子类)。它用于Object.assign()确保存储在绑定函数上的属性与原始函数的属性一致。
  • 闭包得到尊重,箭头函数继续保持正确的上下文。
  • “内部”函数通过 a 存储Symbol,它可以被模块或 IIFE(或任何其他私有化引用的常用技术)混淆。

事不宜迟,代码:

// The Symbol that becomes the key to the "inner" function 
const EFN_KEY = Symbol('ExtensibleFunctionKey');

// Here it is, the `ExtensibleFunction`!!!
class ExtensibleFunction extends Function {
  // Just pass in your function. 
  constructor (fn) {
    // This essentially calls Function() making this function look like:
    // `function (EFN_KEY, ...args) { return this[EFN_KEY](...args); }`
    // `EFN_KEY` is passed in because this function will escape the closure
    super('EFN_KEY, ...args','return this[EFN_KEY](...args)');
    // Create a new function from `this` that binds to `this` as the context
    // and `EFN_KEY` as the first argument.
    let ret = Function.prototype.bind.apply(this, [this, EFN_KEY]);
    // For both the original and bound funcitons, we need to set the `[EFN_KEY]`
    // property to the "inner" function. This is done with a getter to avoid
    // potential overwrites/enumeration
    Object.defineProperty(this, EFN_KEY, {get: ()=>fn});
    Object.defineProperty(ret, EFN_KEY, {get: ()=>fn});
    // Return the bound function
    return ret;
  }

  // We'll make `bind()` work just like it does normally
  bind (...args) {
    // We don't want to bind `this` because `this` doesn't have the execution context
    // It's the "inner" function that has the execution context.
    let fn = this[EFN_KEY].bind(...args);
    // Now we want to return a new instance of `this.constructor` with the newly bound
    // "inner" function. We also use `Object.assign` so the instance properties of `this`
    // are copied to the bound function.
    return Object.assign(new this.constructor(fn), this);
  }

  // Pretty much the same as `bind()`
  apply (...args) {
    // Self explanatory
    return this[EFN_KEY].apply(...args);
  }

  // Definitely the same as `apply()`
  call (...args) {
    return this[EFN_KEY].call(...args);
  }
}

/**
 * Below is just a bunch of code that tests many scenarios.
 * If you run this snippet and check your console (provided all ES6 features
 * and console.table are available in your browser [Chrome, Firefox?, Edge?])
 * you should get a fancy printout of the test results.
 */

// Just a couple constants so I don't have to type my strings out twice (or thrice).
const CONSTRUCTED_PROPERTY_VALUE = `Hi, I'm a property set during construction`;
const ADDITIONAL_PROPERTY_VALUE = `Hi, I'm a property added after construction`;

// Lets extend our `ExtensibleFunction` into an `ExtendedFunction`
class ExtendedFunction extends ExtensibleFunction {
  constructor (fn, ...args) {
    // Just use `super()` like any other class
    // You don't need to pass ...args here, but if you used them
    // in the super class, you might want to.
    super(fn, ...args);
    // Just use `this` like any other class. No more messing with fake return values!
    let [constructedPropertyValue, ...rest] = args;
    this.constructedProperty = constructedPropertyValue;
  }
}

// An instance of the extended function that can test both context and arguments
// It would work with arrow functions as well, but that would make testing `this` impossible.
// We pass in CONSTRUCTED_PROPERTY_VALUE just to prove that arguments can be passed
// into the constructor and used as normal
let fn = new ExtendedFunction(function (x) {
  // Add `this.y` to `x`
  // If either value isn't a number, coax it to one, else it's `0`
  return (this.y>>0) + (x>>0)
}, CONSTRUCTED_PROPERTY_VALUE);

// Add an additional property outside of the constructor
// to see if it works as expected
fn.additionalProperty = ADDITIONAL_PROPERTY_VALUE;

// Queue up my tests in a handy array of functions
// All of these should return true if it works
let tests = [
  ()=> fn instanceof Function, // true
  ()=> fn instanceof ExtensibleFunction, // true
  ()=> fn instanceof ExtendedFunction, // true
  ()=> fn.bind() instanceof Function, // true
  ()=> fn.bind() instanceof ExtensibleFunction, // true
  ()=> fn.bind() instanceof ExtendedFunction, // true
  ()=> fn.constructedProperty == CONSTRUCTED_PROPERTY_VALUE, // true
  ()=> fn.additionalProperty == ADDITIONAL_PROPERTY_VALUE, // true
  ()=> fn.constructor == ExtendedFunction, // true
  ()=> fn.constructedProperty == fn.bind().constructedProperty, // true
  ()=> fn.additionalProperty == fn.bind().additionalProperty, // true
  ()=> fn() == 0, // true
  ()=> fn(10) == 10, // true
  ()=> fn.apply({y:10}, [10]) == 20, // true
  ()=> fn.call({y:10}, 20) == 30, // true
  ()=> fn.bind({y:30})(10) == 40, // true
];

// Turn the tests / results into a printable object
let table = tests.map((test)=>(
  {test: test+'', result: test()}
));

// Print the test and result in a fancy table in the console.
// F12 much?
console.table(table);

编辑

因为我有心情,所以我想我会在 npm 上为此发布一个包。

于 2016-10-30T20:07:59.830 回答
2

首先,我用 来解决arguments.callee,但这很糟糕。
我预计它会在全局严格模式下中断,但似乎即使在那里也能正常工作。

class Smth extends Function {
  constructor (x) {
    super('return arguments.callee.x');
    this.x = x;
  }
}

(new Smth(90))()

这是一个不好的方法,因为使用arguments.callee,将代码作为字符串传递并强制其以非严格模式执行。但是出现了覆盖的想法apply

var global = (1,eval)("this");

class Smth extends Function {
  constructor(x) {
    super('return arguments.callee.apply(this, arguments)');
    this.x = x;
  }
  apply(me, [y]) {
    me = me !== global && me || this;
    return me.x + y;
  }
}

和测试,表明我能够以不同的方式将其作为函数运行:

var f = new Smth(100);

[
f instanceof Smth,
f(1),
f.call(f, 2),
f.apply(f, [3]),
f.call(null, 4),
f.apply(null, [5]),
Function.prototype.apply.call(f, f, [6]),
Function.prototype.apply.call(f, null, [7]),
f.bind(f)(8),
f.bind(null)(9),
(new Smth(200)).call(new Smth(300), 1),
(new Smth(200)).apply(new Smth(300), [2]),
isNaN(f.apply(window, [1])) === isNaN(f.call(window, 1)),
isNaN(f.apply(window, [1])) === isNaN(Function.prototype.apply.call(f, window, [1])),
] == "true,101,102,103,104,105,106,107,108,109,301,302,true,true"

版本与

super('return arguments.callee.apply(arguments.callee, arguments)');

实际上包含bind功能:

(new Smth(200)).call(new Smth(300), 1) === 201

版本与

super('return arguments.callee.apply(this===(1,eval)("this") ? null : this, arguments)');
...
me = me || this;

使call和不一致applywindow

isNaN(f.apply(window, [1])) === isNaN(f.call(window, 1)),
isNaN(f.apply(window, [1])) === isNaN(Function.prototype.apply.call(f, window, [1])),

所以支票应该移到apply

super('return arguments.callee.apply(this, arguments)');
...
me = me !== global && me || this;
于 2016-04-26T17:15:25.690 回答
1

有一个利用 JavaScript 函数功能的简单解决方案:将“逻辑”作为函数参数传递给类的构造函数,将该类的方法分配给该函数,然后从构造函数返回该函数作为结果:

class Funk
{
    constructor (f)
    { let proto       = Funk.prototype;
      let methodNames = Object.getOwnPropertyNames (proto);
      methodNames.map (k => f[k] = this[k]);
      return f;
    }

    methodX () {return 3}
}

let myFunk  = new Funk (x => x + 1);
let two     = myFunk(1);         // == 2
let three   = myFunk.methodX();  // == 3

以上是在 Node.js 8 上测试的。

上面示例的一个缺点是它不支持从超类链继承的方法。为了支持这一点,只需将“Object .getOwnPropertyNames(...)”替换为还返回继承方法名称的内容。我相信如何做到这一点在 Stack Overflow 上的其他一些问题答案中进行了解释:-)。顺便提一句。如果 ES7 添加一个方法来生成继承方法的名称,那就太好了;-)。

如果您需要支持继承的方法,一种可能性是向上述类添加一个静态方法,该方法返回所有继承的和本地方法名称。然后从构造函数中调用它。如果您随后扩展该类 Funk,您也将继承该静态方法。

于 2017-11-27T15:26:45.977 回答