我正在尝试使用 Adagrad 优化器构建 CNN,但出现以下错误。
tensorflow.python.framework.errors.FailedPreconditionError:尝试使用未初始化的值Variable_7/Adadelta
[[节点:Adadelta/update_Variable_7/ApplyAdadelta = ApplyAdadelta[T=DT_FLOAT, _class=["loc:@Variable_7"], use_locking=false, _device="/job:localhost/replica:0/task:0/cpu:0 "](Variable_7, Variable_7/Adadelta, Variable_7/Adadelta_1, Adadelta/lr, Adadelta/rho, Adadelta/epsilon, gradients/add_3_grad/tuple/control_dependency_1)]] 由op u'Adadelta/update_Variable_7/ApplyAdadelta'引起,
优化器 = tf.train.AdadeltaOptimizer(learning_rate).minimize(cross_entropy)
如本文所述,我尝试在 adagrad 语句之后重新初始化会话变量,但这也无济于事。
我怎样才能避免这个错误?谢谢。
import tensorflow as tf
import numpy
from tensorflow.examples.tutorials.mnist import input_data
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 100
batch_size = 1000
display_step = 1
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name="weights")
b = tf.Variable(tf.zeros([10]), name="bias")
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# Initializing the variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
x_image = tf.reshape(batch_xs, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(batch_ys * tf.log(y_conv), reduction_indices=[1]))
#optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy)
optimizer = tf.train.AdadeltaOptimizer(learning_rate).minimize(cross_entropy)
sess.run(init)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(batch_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run([cross_entropy, y_conv,optimizer])
print cross_entropy.eval()