1

如何记录(使用SummaryWriter,例如TensorBoard)张量的单个标量元素Variable?例如,如何记录网络中给定层或节点的各个权重?

在我的示例代码中,我将一个通用的前馈神经网络投入使用以进行简单的线性回归,并希望(在这种情况下)随着学习的进行记录孤立隐藏层中孤立节点的权重。

例如,我可以在会话期间显式获取这些值

sess.run(layer_weights)[0][i][0]

对于第i-th 个权重,其中layer_weights是权重Variables 的列表;但我不知道如何记录相应的标量值。如果我尝试

w1 = tf.slice(layer_weights[0], [0], [1])[0]
tf.scalar_summary('w1', w1)

或者

w1 = layer_weights[0][1][0]
tf.scalar_summary('w1', w1)

我明白了

ValueError:形状 (5, 1) 必须具有等级 1

如何从 TensorFlow 记录单个标量值Variable


from __future__ import (absolute_import, print_function, division, unicode_literals)

import numpy as np
import tensorflow as tf


# Basic model parameters as external flags
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('network_nodes', [5, 1], 'The number of nodes in each layer, including input and output.')
flags.DEFINE_float('epochs', 250, 'Epochs to run')
flags.DEFINE_float('learning_rate', 0.15, 'Initial learning rate.')
flags.DEFINE_string('data_dir', './data', 'Directory to hold training and test data.')
flags.DEFINE_string('train_dir', './_tmp/train', 'Directory to log training (and the network def).')
flags.DEFINE_string('test_dir', './_tmp/test', 'Directory to log testing.')


def variable_summaries(var, name):
    with tf.name_scope("summaries"):
        mean = tf.reduce_mean(var)
        tf.scalar_summary('mean/' + name, mean)
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
            tf.scalar_summary('sttdev/' + name, stddev)
    tf.scalar_summary('max/' + name, tf.reduce_max(var))
    tf.scalar_summary('min/' + name, tf.reduce_min(var))
    tf.histogram_summary(name, var)


def add_layer(input_tensor, input_dim, output_dim, neuron_fn, layer_name):
    with tf.name_scope(layer_name):
        with tf.name_scope("weights"):
            weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
        with tf.name_scope("biases"):
            biases = tf.Variable(tf.constant(0.1, shape=[output_dim]))
        with tf.name_scope('activations'):
            with tf.name_scope('weighted_inputs'):
                weighted_inputs = tf.matmul(input_tensor, weights) + biases
                tf.histogram_summary(layer_name + '/weighted_inputs', weighted_inputs)
            output = neuron_fn(weighted_inputs)
    return output, weights, biases


def make_ff_network(nodes, input_activation, hidden_activation_fn=tf.nn.sigmoid, output_activation_fn=tf.nn.softmax):
    layer_activations = [input_activation]
    layer_weights = []
    layer_biases = []
    n_layers = len(nodes)
    for l in range(1, n_layers):
        a, w, b = add_layer(layer_activations[l - 1], nodes[l - 1], nodes[l],
                         output_activation_fn if l == n_layers - 1 else hidden_activation_fn,
                         'output_layer' if l == n_layers - 1 else 'hidden_layer' + (
                             '_{}'.format(l) if n_layers > 3 else ''))
        layer_activations += [a]
        layer_weights += [w]
        layer_biases += [b]
    with tf.name_scope('output'):
        net_activation = tf.identity(layer_activations[-1], name='network_activation')
    return net_activation, layer_weights, layer_biases

# Inputs and outputs
with tf.name_scope('data'):
    x = tf.placeholder(tf.float32, shape=[None, FLAGS.network_nodes[0]], name='inputs')
    y_ = tf.placeholder(tf.float32, shape=[None, FLAGS.network_nodes[-1]], name='correct_outputs')

# Network structure
y, layer_weights, layer_biases = make_ff_network(FLAGS.network_nodes, x, output_activation_fn=tf.identity)

# Metrics and operations
with tf.name_scope('accuracy'):
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.square(y - y_))
    # NONE OF THESE WORK:
    #w1 = tf.slice(layer_weights[0], [0], [1])[0]
    #tf.scalar_summary('w1', w1)
    #w1 = layer_weights[0][1][0]
    #tf.scalar_summary('w1', w1)
    tf.scalar_summary('loss', loss)

train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(loss)

# Logging
train_writer = tf.train.SummaryWriter(FLAGS.train_dir, tf.get_default_graph())
test_writer = tf.train.SummaryWriter(FLAGS.test_dir)
merged = tf.merge_all_summaries()



W = np.array([1.0, 2.0, 3.0, 4.0, 5.0])

train_x = np.random.rand(100000, FLAGS.network_nodes[0])
train_y = np.array([np.dot(W, train_x.T)+ 6.0]).T

test_x = np.random.rand(1000, FLAGS.network_nodes[0])
test_y = np.array([np.dot(W, test_x.T)+ 6.0]).T

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())

    for ep in range(FLAGS.epochs):
        sess.run(train_step, feed_dict={x: train_x, y_: train_y})
        summary = sess.run(merged, feed_dict={x: test_x, y_: test_y})
        test_writer.add_summary(summary, ep+1)

    # THESE WORK
    print('w1 = {}'.format(sess.run(layer_weights)[0][0][0]))
    print('w2 = {}'.format(sess.run(layer_weights)[0][1][0]))
    print('w3 = {}'.format(sess.run(layer_weights)[0][2][0]))
    print('w4 = {}'.format(sess.run(layer_weights)[0][3][0]))
    print('w5 = {}'.format(sess.run(layer_weights)[0][4][0]))
    print(' b = {}'.format(sess.run(layer_biases)[0][0]))
4

1 回答 1

3

代码中有不同的错误。

主要问题是您将张量的 python 列表传递给 scalar_summary。该错误表明您传递的张量没有 Rank 1 与切片操作有关。

您想要传递权重并逐层记录它们。一种方法是记录每一层的每个权重:

for weight in layer_weights:
    tf.scalar_summary([ ['%s_w%d%d' % (weight.name, i,j) for i in xrange(len(layer_weights))]  for j in xrange(5) ], weight)

这将在张量板上产生tensorboard --logdir=./_tmp/test这些漂亮的图表

在此处输入图像描述

于 2016-04-24T21:14:02.657 回答