我编写了一个自适应解析器,可以将英语短语转换为数学表达式。您可以使用自己的翻译规则轻松扩展它,因此它可以用于创建可扩展的自然语言用户界面。
这是一种可能的输入:
(A squared) times (b squared) equals c to the power of 3 times the product of 5 and 6
这是它的输出:
(A * A) * (b * b) = c ^ 3 * 5 * 6
该程序的实现如下所示:
:- initialization(main).
:- set_prolog_flag(double_quotes, chars). % This is for SWI 7+ to revert to the prior interpretation of quoted strings.
%This is an adaptive parser for SWI-Prolog.
main :-
%Type any kind of input here to see the output! The input must be compatible with the grammar that is defined below.
Input = "(A squared) times (b squared) equals c to the power of 3 times the product of 5 and 6",
iterated_translate(Input,Output), writeln(Input), writeln(Output), writeln('\n'), writeln('\n').
%The grammar is defined here. The variables must be uppercase letters.
%The input in each translation rule is followed by its output.
theList(TheList) :-
%You can easily extend this parser by adding more rules to this list.
TheList =
[['A to the power of B',
'A ^ B'],
%The next transformation is the final output of 'A to the power of B'.
['A ^ B',
'A ^ B'],
['A * B',
'A * B'],
['the product of A and B',
'A times B'],
['A squared',
'the product of A and A'],
['A times B',
'A * B'],
['A = B',
'A = B'],
['A equals B', 'A = B']].
%This is the end of the grammar. The rest of the translator is implemented below.
output_expr(Lang,[Input,[A,B]]) -->
{
theList(TheList),
list_to_output__(TheList,TheList1,[A,B]),
member([Input,Output],
TheList1)
},
input_to_output_(Lang,Input,Output).
atom_is_upper(N) :-
atom_chars(N, [L]),
char_type(L, upper).
atom_is_var(Names_to_vars,Atom,Var) :-
atom(Atom),atom_is_upper(Atom),member([Atom,Var],Names_to_vars).
list_to_output__([],[],_) :- true.
list_to_output__([Start1|Rest1],[Start2|Rest2],Vars) :-
list_to_output_(Start1,Start2,Vars),list_to_output__(Rest1,Rest2,Vars).
list_to_output_([A1_,B1_],[A2,B2],Vars) :- atomic_list_concat(A1,' ',A1_),atomic_list_concat(B1,' ',B1_),list_to_output(A1,A2,Vars),list_to_output(B1,B2,Vars).
list_to_output([],[],_) :- true.
list_to_output([Start1|Rest1],[Start2|Rest2],[A,B]) :-
(Start1='A'->Start2=A;Start1='B'-> Start2=B;Start1=Start2),list_to_output(Rest1,Rest2,[A,B]).
list_to_grammar_(Lang,Start,Rest) -->
{(Start = [A])->(Rest = []->Start1 = expr(Lang,A);Start1 = parentheses_expr(Lang,A));atom_chars(Start,Start1)},Start1.
list_to_grammar(Lang,[Start]) -->
list_to_grammar_(Lang,Start,[]).
list_to_grammar(Lang,[Start|Rest]) -->
list_to_grammar_(Lang,Start,Rest),ws_,list_to_grammar(Lang,Rest).
a_number([A,B]) -->
(a__number(A), ".", a__number(B)).
a_number(A) -->
a__number(A).
a__number([L|Ls]) --> digit(L), a__number_r(Ls).
a__number_r([L|Ls]) --> digit(L), a__number_r(Ls).
a__number_r([]) --> [].
digit(Let) --> [Let], { code_type(Let, digit) }.
symbol([L|Ls]) --> letter(L), symbol_r(Ls).
symbol_r([L|Ls]) --> letter(L), symbol_r(Ls).
symbol_r([]) --> [].
letter(Let) --> [Let], { code_type(Let, alpha) }.
ws --> "";((" ";"\n"),ws).
ws_ --> (" ";"\n"),ws.
input_to_output(Lang,A,B) -->
{Lang = input} ->
A;
{Lang=output} ->
B.
input_to_output_(Lang,A,B) -->
{A_=list_to_grammar(Lang,A),B_=list_to_grammar(Lang,B)},input_to_output(Lang,A_,B_).
parentheses_expr(Lang,["(",A,")"]) -->
("(",(expr(Lang,A)),")").
parentheses_expr(_,symbol(A)) -->
symbol(A).
parentheses_expr(_,a_number(A)) -->
a_number(A).
expr(Lang,A) -->
parentheses_expr(Lang,A);output_expr(Lang,A).
translate(Input1,Output1) :-
phrase(output_expr(input,Ls),Input1),
phrase(output_expr(output,Ls),Output1).
iterated_translate(Input1, Output2) :-
%Keep translating until the input is the same as the output.
translate(Input1,Output1),
(Input1=Output1, Output1 = Output2;iterated_translate(Output1,Output2)).
基于这个例子,我编写了另一个带有自然语言用户界面的自适应语法系统。