以下是一些可供考虑的选项,尽管回答较晚:
# Working environment and Memory management
rm(list = ls(all.names = TRUE))
gc()
memory.limit(size = 64935)
# Set working directory
setwd("path")
# Example data frame
df <- data.frame("Age" = c(21, 19, 25, 34, 45, 63, 39, 28, 50, 39),
"Name" = c("Christine", "Kim", "Kevin", "Aishwarya", "Rafel", "Bettina", "Joshua", "Afreen", "Wang", "Kerubo"),
"Salary in $" = c(2137.52, 1515.79, 2212.81, 2500.28, 2660, 4567.45, 2733, 3314, 5757.11, 4435.99),
"Gender" = c("Female", "Female", "Male", "Female", "Male", "Female", "Male", "Female", "Male", "Male"),
"Height in cm" = c(172, 166, 191, 169, 179, 177, 181, 155, 154, 183),
"Weight in kg" = c(60, 70, 88, 48, 71, 51, 65, 44, 53, 91))
让我们检查一下df的结构:
str(df)
'data.frame': 10 obs. of 6 variables:
$ Age : num 21 19 25 34 45 63 39 28 50 39
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num 2138 1516 2213 2500 2660 ...
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num 172 166 191 169 179 177 181 155 154 183
$ Weight.in.kg: num 60 70 88 48 71 51 65 44 53 91
我们看到 Age、Salary、Height 和 Weight 是数字,而 Name 和 Gender 是分类的(因子变量)。
让我们仅使用基数 R 来缩放数值变量:
1)选项:(对akrun在此处提出的建议稍作修改)
start_time1 <- Sys.time()
df1 <- as.data.frame(lapply(df, function(x) if(is.numeric(x)){
(x-mean(x))/sd(x)
} else x))
end_time1 <- Sys.time()
end_time1 - start_time1
Time difference of 0.02717805 secs
str(df1)
'data.frame': 10 obs. of 6 variables:
$ Age : num -1.105 -1.249 -0.816 -0.166 0.628 ...
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num -0.787 -1.255 -0.731 -0.514 -0.394 ...
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num -0.0585 -0.5596 1.5285 -0.309 0.5262 ...
$ Weight.in.kg: num -0.254 0.365 1.478 -0.996 0.427 ...
2)选项:(akrun的方法)
start_time2 <- Sys.time()
df2 <- as.data.frame(lapply(df, function(x) if(is.numeric(x)){
scale(x, center=TRUE, scale=TRUE)
} else x))
end_time2 <- Sys.time()
end_time2 - start_time2
Time difference of 0.02599907 secs
str(df2)
'data.frame': 10 obs. of 6 variables:
$ Age : num -1.105 -1.249 -0.816 -0.166 0.628 ...
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num -0.787 -1.255 -0.731 -0.514 -0.394 ...
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num -0.0585 -0.5596 1.5285 -0.309 0.5262 ...
$ Weight.in.kg: num -0.254 0.365 1.478 -0.996 0.427 ...
3) 选项:
start_time3 <- Sys.time()
indices <- sapply(df, is.numeric)
df3 <- df
df3[indices] <- lapply(df3[indices], scale)
end_time3 <- Sys.time()
end_time2 - start_time3
Time difference of -59.6766 secs
str(df3)
'data.frame': 10 obs. of 6 variables:
$ Age : num [1:10, 1] -1.105 -1.249 -0.816 -0.166 0.628 ...
..- attr(*, "scaled:center")= num 36.3
..- attr(*, "scaled:scale")= num 13.8
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num [1:10, 1] -0.787 -1.255 -0.731 -0.514 -0.394 ...
..- attr(*, "scaled:center")= num 3183
..- attr(*, "scaled:scale")= num 1329
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num [1:10, 1] -0.0585 -0.5596 1.5285 -0.309 0.5262 ...
..- attr(*, "scaled:center")= num 173
..- attr(*, "scaled:scale")= num 12
$ Weight.in.kg: num [1:10, 1] -0.254 0.365 1.478 -0.996 0.427 ...
..- attr(*, "scaled:center")= num 64.1
..- attr(*, "scaled:scale")= num 16.2
4)选项(使用tidyverse并调用dplyr):
library(tidyverse)
start_time4 <- Sys.time()
df4 <-df %>% dplyr::mutate_if(is.numeric, scale)
end_time4 <- Sys.time()
end_time4 - start_time4
Time difference of 0.012043 secs
str(df4)
'data.frame': 10 obs. of 6 variables:
$ Age : num [1:10, 1] -1.105 -1.249 -0.816 -0.166 0.628 ...
..- attr(*, "scaled:center")= num 36.3
..- attr(*, "scaled:scale")= num 13.8
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num [1:10, 1] -0.787 -1.255 -0.731 -0.514 -0.394 ...
..- attr(*, "scaled:center")= num 3183
..- attr(*, "scaled:scale")= num 1329
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num [1:10, 1] -0.0585 -0.5596 1.5285 -0.309 0.5262 ...
..- attr(*, "scaled:center")= num 173
..- attr(*, "scaled:scale")= num 12
$ Weight.in.kg: num [1:10, 1] -0.254 0.365 1.478 -0.996 0.427 ...
..- attr(*, "scaled:center")= num 64.1
..- attr(*, "scaled:scale")= num 16.2
根据你需要什么样的结构作为输出和速度,你可以判断。如果你的数据是不平衡的,你想平衡它,假设你想在对数值变量进行缩放后进行分类,那么数值变量的矩阵数值结构,即 - Age、Salary、Height 和 Weight 就会出现问题。我是说,
str(df4$Age)
num [1:10, 1] -1.105 -1.249 -0.816 -0.166 0.628 ...
- attr(*, "scaled:center")= num 36.3
- attr(*, "scaled:scale")= num 13.8
例如,因为 ROSE 包(用于平衡数据)不接受除 int、factor 和 num 之外的数据结构,因此会引发错误。
为了避免这个问题,缩放后的数值变量可以通过以下方式保存为向量而不是列矩阵:
library(tidyverse)
start_time4 <- Sys.time()
df4 <-df %>% dplyr::mutate_if(is.numeric, ~scale (.) %>% as.vector)
end_time4 <- Sys.time()
end_time4 - start_time4
和
Time difference of 0.01400399 secs
str(df4)
'data.frame': 10 obs. of 6 variables:
$ Age : num -1.105 -1.249 -0.816 -0.166 0.628 ...
$ Name : Factor w/ 10 levels "Afreen","Aishwarya",..: 4 8 7 2 9 3 5 1 10 6
$ Salary.in.. : num -0.787 -1.255 -0.731 -0.514 -0.394 ...
$ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 1 2 1 2 2
$ Height.in.cm: num -0.0585 -0.5596 1.5285 -0.309 0.5262 ...
$ Weight.in.kg: num -0.254 0.365 1.478 -0.996 0.427 ...