我正在上一门人工智能课程,我们需要创建一个玩井字游戏的人工智能。
指导员指定在放置下一步时对 AI 的决策过程使用 alpha-beta 修剪。我现在遇到的问题是人工智能创建决策树并采取行动所需的时间。普通的 3x3 很好,3x4 和 4x3 需要一点时间,但是 4x4 第一步需要几分钟,而且我还没有从更大的游戏板上得到结果。
我使用的源代码:
/** Get next best move for computer. Return int[2] of {row, >col} */
@Override
int[] move() {
int[] result = minimax(2, mySeed, Integer.MIN_VALUE, >Integer.MAX_VALUE);
// depth, max-turn, alpha, beta
return new int[] {result[1], result[2]}; // row, col
}
/** Minimax (recursive) at level of depth for maximizing or >minimizing player
with alpha-beta cut-off. Return int[3] of {score, row, col} >*/
private int[] minimax(int depth, Seed player, int alpha, int >beta) {
// Generate possible next moves in a list of int[2] of {row, >col}.
List<int[]> nextMoves = generateMoves();
// mySeed is maximizing; while oppSeed is minimizing
int score;
int bestRow = -1;
int bestCol = -1;
if (nextMoves.isEmpty() || depth == 0) {
// Gameover or depth reached, evaluate score
score = evaluate();
return new int[] {score, bestRow, bestCol};
} else {
for (int[] move : nextMoves) {
// try this move for the current "player"
cells[move[0]][move[1]].content = player;
if (player == mySeed) { // mySeed (computer) is >maximizing player
score = minimax(depth - 1, oppSeed, alpha, beta)[0];
if (score > alpha) {
alpha = score;
bestRow = move[0];
bestCol = move[1];
}
} else { // oppSeed is minimizing player
score = minimax(depth - 1, mySeed, alpha, beta)[0];
if (score < beta) {
beta = score;
bestRow = move[0];
bestCol = move[1];
}
}
// undo move
cells[move[0]][move[1]].content = Seed.EMPTY;
// cut-off
if (alpha >= beta) break;
}
return new int[] {(player == mySeed) ? alpha : beta, >bestRow, bestCol};
}
}
如果需要,请提供源链接
导师还建议使用迭代加深搜索,但我是一个不知道怎么做的傻瓜。