Dlib C++ 可以很好地检测地标和估计人脸姿态。但是,如何获得头部姿势的 3D 坐标轴方向 (x,y,z)?
问问题
13433 次
1 回答
16
我也遇到了同样的问题,不久前,搜索并找到了 1-2 篇有用的博客文章,此链接将为您提供所涉及技术的概述,如果您只需要以小数位计算 3D 姿势,那么您可以跳过 OpenGL 渲染部分,但是如果您想直观地获得反馈,那么您也可以尝试使用 OpenGL,但我建议您作为初学者忽略 OpenGL 部分,因此从github页面提取的最小工作代码片段会看起来像这样:
// Reading image using OpenCV, you may use dlib as well.
cv::Mat img = cv::imread(imagePath);
std::vector<double> rv(3), tv(3);
cv::Mat rvec(rv),tvec(tv);
cv::Vec3d eav;
// Labelling the 3D Points derived from a 3D model of human face.
// You may replace these points as per your custom 3D head model if any
std::vector<cv::Point3f > modelPoints;
modelPoints.push_back(cv::Point3f(2.37427,110.322,21.7776)); // l eye (v 314)
modelPoints.push_back(cv::Point3f(70.0602,109.898,20.8234)); // r eye (v 0)
modelPoints.push_back(cv::Point3f(36.8301,78.3185,52.0345)); //nose (v 1879)
modelPoints.push_back(cv::Point3f(14.8498,51.0115,30.2378)); // l mouth (v 1502)
modelPoints.push_back(cv::Point3f(58.1825,51.0115,29.6224)); // r mouth (v 695)
modelPoints.push_back(cv::Point3f(-61.8886f,127.797,-89.4523f)); // l ear (v 2011)
modelPoints.push_back(cv::Point3f(127.603,126.9,-83.9129f)); // r ear (v 1138)
// labelling the position of corresponding feature points on the input image.
std::vector<cv::Point2f> srcImagePoints = {cv::Point2f(442, 442), // left eye
cv::Point2f(529, 426), // right eye
cv::Point2f(501, 479), // nose
cv::Point2f(469, 534), //left lip corner
cv::Point2f(538, 521), // right lip corner
cv::Point2f(349, 457), // left ear
cv::Point2f(578, 415) // right ear};
cv::Mat ip(srcImagePoints);
cv::Mat op = cv::Mat(modelPoints);
cv::Scalar m = mean(cv::Mat(modelPoints));
rvec = cv::Mat(rv);
double _d[9] = {1,0,0,
0,-1,0,
0,0,-1};
Rodrigues(cv::Mat(3,3,CV_64FC1,_d),rvec);
tv[0]=0;tv[1]=0;tv[2]=1;
tvec = cv::Mat(tv);
double max_d = MAX(img.rows,img.cols);
double _cm[9] = {max_d, 0, (double)img.cols/2.0,
0 , max_d, (double)img.rows/2.0,
0 , 0, 1.0};
cv::Mat camMatrix = cv::Mat(3,3,CV_64FC1, _cm);
double _dc[] = {0,0,0,0};
solvePnP(op,ip,camMatrix,cv::Mat(1,4,CV_64FC1,_dc),rvec,tvec,false,CV_EPNP);
double rot[9] = {0};
cv::Mat rotM(3,3,CV_64FC1,rot);
Rodrigues(rvec,rotM);
double* _r = rotM.ptr<double>();
printf("rotation mat: \n %.3f %.3f %.3f\n%.3f %.3f %.3f\n%.3f %.3f %.3f\n",
_r[0],_r[1],_r[2],_r[3],_r[4],_r[5],_r[6],_r[7],_r[8]);
printf("trans vec: \n %.3f %.3f %.3f\n",tv[0],tv[1],tv[2]);
double _pm[12] = {_r[0],_r[1],_r[2],tv[0],
_r[3],_r[4],_r[5],tv[1],
_r[6],_r[7],_r[8],tv[2]};
cv::Mat tmp,tmp1,tmp2,tmp3,tmp4,tmp5;
cv::decomposeProjectionMatrix(cv::Mat(3,4,CV_64FC1,_pm),tmp,tmp1,tmp2,tmp3,tmp4,tmp5,eav);
printf("Face Rotation Angle: %.5f %.5f %.5f\n",eav[0],eav[1],eav[2]);
输出:
**X** **Y** **Z**
Face Rotation Angle: 171.44027 -8.72583 -9.90596
于 2016-04-13T07:13:59.113 回答