1

我正在做基本的千层面示例: https ://github.com/Lasagne/Lasagne/blob/master/examples/mnist.py

我通过将它与另一个类似的例子结合起来稍微修改了它。

我正在尝试运行 CNN 模型,在其中我向 CNN def 添加了一些额外的输入,但应该没有什么不同。还将示例中输入层的默认值 28 更改为 60(高度和宽度),稍后在代码中使用类,但代码“挂起”在最后一个网络行,这意味着代码是仍在运行,但什么也没有发生。 运行代码时输出。input_var 在主循环中是这样定义的:

input_var = T.tensor4('input_var')

其余代码:

def build_cnn(classes, height, width, input_var=None):

    print("Input layer, with height: {}, width: {} and input var: {}".format(height, width, input_var))

    network = lasagne.layers.InputLayer(shape = (None, 1, height, width),
                                    input_var=input_var)


    print("Convolutional layer with 32 kernels of size 5x5")
    network = lasagne.layers.Conv2DLayer(network,
                                         num_filters = 32,
                                         filter_size = (5, 5),
                                         nonlinearity = lasagne.nonlinearities.rectify,
                                         W = lasagne.init.HeNormal(gain = 'relu')) 

编辑: 好的,根据我到目前为止的尝试,这似乎是我自己的数据集是问题所在。我已经重塑了我的数据集以匹配 MNIST 数据集。X_train 的形状为 [图像、通道、高度、宽度]。其中通道 = 1 和高度,宽度 = 60。检索这些的代码是:

def load_images():
    dataset_path = os.path.abspath("C:/Users/laende/Dropbox/Skole UiS/4. semester/Master/Master/data/test_database")
    [bilder, label, names] = read_images1(dataset_path, (28, 28))
    label = np.array(label)

    bilder = bilder / np.float32(256)
    bilder = bilder[:, newaxis, :, :]

    X_train1, X_test1, Y_train1, Y_test1 = train_test_split(bilder, label, test_size = 0.2)

    list_of_labels = list(xrange(max(label) + 1))
    classes = len(list_of_labels)

    return X_train1, X_test1, Y_train1, Y_test1, classes

其中 read_images1 是:

 def read_images1(path, sz = None, channel = None):
    c = 0
    X = []
    y = []
    folder_names = []
    for dirname, dirnames, filenames, in os.walk(path):
        for subdirname in dirnames:
            subject_path = os.path.join(dirname, subdirname)
            folder_names.append(subdirname)
            for filename in os.listdir(subject_path):
                try:
                    im = cv2.imread(os.path.join(subject_path, filename),     cv2.IMREAD_GRAYSCALE)

                    if (sz is not None):
                        im = cv2.resize(im, sz)

                    X.append(np.asarray(im, dtype = np.uint8))
                    y.append(c)

                except IOError, (errno, strerror):
                    print "I/O error ({0]): {1}".format(errno, strerror)
                except:
                    print "unexpected error:", sys.exc_info()[0]
                    raise
            c = c + 1
    return [X, y, folder_names]

运行的 main 中的代码:

def main(model='mlp', num_epochs=100):
    # Load the dataset

    print("Loading data...")
    mnist = 1
    if mnist == 1:
        classes = 10
        X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()

        dataset = {
            'train': {'X': X_train, 'y': y_train},
            'test': {'X': X_test, 'y': y_test}}
        shape = dataset['train']['X'][0].shape

    else:
        X_train, X_test, y_train, y_test, classes = load_images()

        dataset = {
            'train': {'X': X_train, 'y': y_train},
            'test': {'X': X_test, 'y': y_test}}
        shape = dataset['train']['X'][0].shape

    input_var = T.tensor4('inputs')
    target_var = T.ivector('targets')

    print("Building model and compiling functions...")
    if model == 'mlp':
        network = build_mlp(height=int(shape[1]),
                            width=int(shape[2]),
                            channel=int(shape[0]),
                            classes=int(classes),
                            input_var=input_var)

如果 mnist = 1 (主要)代码运行良好,如果我尝试使用我自己的数据集,它会卡在 build_mlp 中(类似于 cnn 的原始问题):

def build_mlp(classes, channel, height, width, input_var=None):

    neurons = int(height * width)

    network = lasagne.layers.InputLayer(shape = (None, channel, height, width),
                                 input_var=input_var)

    network = lasagne.layers.DropoutLayer(network, p = 0.2)

   #Code gets stuck on this point, running forever, doing nothing.
   #No error messages received either.
    network = lasagne.layers.DenseLayer(
        network,
        num_units = neurons,
        nonlinearity = lasagne.nonlinearities.rectify,
        W = lasagne.init.GlorotUniform())

编辑 2: 在为此苦苦挣扎了一段时间后,我发现在 read_images1() 中调整图像大小导致了问题:

 def read_images1(path, sz = None, channel = None):
    c = 0
    X = []
    y = []
    folder_names = []
    for dirname, dirnames, filenames, in os.walk(path):
        for subdirname in dirnames:
            subject_path = os.path.join(dirname, subdirname)
            folder_names.append(subdirname)
            for filename in os.listdir(subject_path):
                try:
                    im = cv2.imread(os.path.join(subject_path, filename),     cv2.IMREAD_GRAYSCALE)
                    #This part caused the problems. 
                    if (sz is not None):
                        im = cv2.resize(im, sz)

                    X.append(np.asarray(im, dtype = np.uint8))
                    y.append(c)

                except IOError, (errno, strerror):
                    print "I/O error ({0]): {1}".format(errno, strerror)
                except:
                    print "unexpected error:", sys.exc_info()[0]
                    raise
            c = c + 1
    return [X, y, folder_names]

如果我没有通过任何调整大小并使用文件夹中的默认图像大小,则神经网络能够编译。有谁知道为什么?我将 read_images1() 更新为:

 def read_images1(path, sz = None, na = False):
    """

    :param path: sti til mappe med underliggende mapper tilhørende personer.
    :param sz: Størrelse på bildefilene
    :return: returnerer liste av bilder, labels og navn
    """
    c = 0
    X = []
    y = []
    folder_names = []
    for dirname, dirnames, filenames, in os.walk(path):
        for subdirname in dirnames:
            subject_path = os.path.join(dirname, subdirname)
            folder_names.append(subdirname)
            for filename in os.listdir(subject_path):
                try:
                    im = cv2.imread(os.path.join(subject_path, filename), cv2.IMREAD_GRAYSCALE)

                    if (sz is not None):
                        im = cv2.resize(im, dsize=sz, interpolation = cv2.INTER_LANCZOS4)

                    if (na == True):
                        im = im[newaxis, :, :]


                    X.append(np.asarray(im, dtype = np.uint8))
                    y.append(c)

                except IOError, (errno, strerror):
                    print "I/O error ({0]): {1}".format(errno, strerror)
                except:
                    print "unexpected error:", sys.exc_info()[0]
                    raise
            c = c + 1
    return [X, y, folder_names] 

如果我使用 sz = None 和 na = True 运行程序,那么它可以工作。如果为 sz 参数指定了任何大小,则代码会在尝试再次编译神经网络时卡住。

4

1 回答 1

0

好的,我想我可以在这里看到一些问题,不确定您遇到的是哪一个...

  1. read_images1()中,X 是一个 numpy 数组的 python 列表。它在哪里转换为单个 numpy 数组?尝试添加X = numpy.asarray(X). 您还需要将其重塑为 (n_images, n_channels, width, height) 我假设 n_channels=1 表示灰度。网络需要 4D 输入而不是 3D。

  2. 此代码list_of_labels = list(xrange(max(label) + 1)); classes = len(list_of_labels)假定标签是从 0 到 N 的连续数字。是吗?

  3. build_mlp(classes, height, width, input_var=None)与原始示例完全不同build_mlp(input_var=None)。原始示例显然有效,因此任何错误都与差异有关。最大的区别之一是你一直分配给同一个变量,就像这样network = lasagne.layers.DenseLayer(network, ...),原始的每一层都有不同的变量l_hid1 = lasagne.layers.DenseLayer(l_in_drop, ...)

  4. 此外,如果它在此期间挂起,build_mlp()那么问题显然不在于您如何阅读图像。尝试使用原始版本的build_mlp()图像。尝试自己运行它。跳过图像读取,只需build_mlp()使用常量参数调用。

于 2016-04-15T19:15:34.807 回答