2

我正在使用Tensorflow 中的 LSTM 模型
我已经训练并保存了 LSTM 模型。现在我要完成生成句子的最后一个任务。这是我的伪代码:

# We have already the run_epoch(session, m, data, eval_op, verbose=False) function with fee_dict like this:
feed_dict = {m.input_data: x,
             m.targets: y,
             m.initial_state: state}
...
# train and save model
...
# load saved model for generating task
new_sentence = [START_TOKEN]
# Here I want to generate a sentence until END_TOKEN is generated.
while new_sentence[-1] != END_TOKEN:
    logits = get_logits(model, new_sentence)
    # get argmax(logits) or sample(logits)
    next_word = argmax(logits)
    new_sentence.append(next_word)
print(new_sentence)

我的问题是:
在训练、验证或测试模型时,我必须通过feed_dict字典将输入及其标签(通过移位的输入之一)输入到模型中。但是在生成任务中,我只有一个输入,即生成语句new_sentence

如何构建正确的get_logits函数或完整的生成函数?

4

1 回答 1

3

当您训练时,您有神经网络的输出,根据该输出计算错误,根据错误创建优化器以最小化错误。

为了生成一个新句子,您只需要获得神经网络(rnn)的输出。

编辑:

"""
Placeholders
"""

x = tf.placeholder(tf.int32, [batch_size, num_steps], name='input_placeholder')
y = tf.placeholder(tf.int32, [batch_size, num_steps], name='labels_placeholder')
init_state = tf.zeros([batch_size, state_size])

"""
RNN Inputs
"""

# Turn our x placeholder into a list of one-hot tensors:
# rnn_inputs is a list of num_steps tensors with shape [batch_size, num_classes]
x_one_hot = tf.one_hot(x, num_classes)
rnn_inputs = tf.unpack(x_one_hot, axis=1)

"""
Definition of rnn_cell

This is very similar to the __call__ method on Tensorflow's BasicRNNCell. See:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn_cell.py
"""
with tf.variable_scope('rnn_cell'):
    W = tf.get_variable('W', [num_classes + state_size, state_size])
    b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0))

def rnn_cell(rnn_input, state):
    with tf.variable_scope('rnn_cell', reuse=True):
        W = tf.get_variable('W', [num_classes + state_size, state_size])
        b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0))
    return tf.tanh(tf.matmul(tf.concat(1, [rnn_input, state]), W) + b)

state = init_state
rnn_outputs = []
for rnn_input in rnn_inputs:
    state = rnn_cell(rnn_input, state)
    rnn_outputs.append(state)
final_state = rnn_outputs[-1]

#logits and predictions
with tf.variable_scope('softmax'):
    W = tf.get_variable('W', [state_size, num_classes])
    b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0))
logits = [tf.matmul(rnn_output, W) + b for rnn_output in rnn_outputs]
predictions = [tf.nn.softmax(logit) for logit in logits]

# Turn our y placeholder into a list labels
y_as_list = [tf.squeeze(i, squeeze_dims=[1]) for i in tf.split(1, num_steps, y)]

#losses and train_step
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logit,label) for \
          logit, label in zip(logits, y_as_list)]
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss)
 def train():
  with tf.Session() as sess:
    #load the model
    training_losses = []
    for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)):
        training_loss = 0
        training_state = np.zeros((batch_size, state_size))
        if verbose:
            print("\nEPOCH", idx)
        for step, (X, Y) in enumerate(epoch):
            tr_losses, training_loss_, training_state, _ = \
                sess.run([losses,
                          total_loss,
                          final_state,
                          train_step],
                              feed_dict={x:X, y:Y, init_state:training_state})
            training_loss += training_loss_
            if step % 100 == 0 and step > 0:
                if verbose:
                    print("Average loss at step", step,
                          "for last 250 steps:", training_loss/100)
                training_losses.append(training_loss/100)
                training_loss = 0
     #save the model

def generate_seq():
  with tf.Session() as sess:
    #load the model
    # load saved model for generating task
    new_sentence = [START_TOKEN]
    # Here I want to generate a sentence until END_TOKEN is generated.
    while new_sentence[-1] != END_TOKEN:
      logits = sess.run(final_state,{x:np.asarray([new_sentence])})
      # get argmax(logits) or sample(logits)
      next_word = argmax(logits[0])
      new_sentence.append(next_word)
  print(new_sentence)
于 2017-02-12T22:38:57.077 回答