我正在为遗传算法任务尝试 JGAP。我用过他们的例子:
// Start with a DefaultConfiguration, which comes setup with the
// most common settings.
// -------------------------------------------------------------
Configuration conf = new DefaultConfiguration();
// Set the fitness function we want to use, which is our
// MinimizingMakeChangeFitnessFunction that we created earlier.
// We construct it with the target amount of change provided
// by the user.
// ------------------------------------------------------------
int targetAmount = TARGET_AMOUNT_OF_CHANGE;
FitnessFunction myFunc = new MinimizingMakeChangeFitnessFunction(targetAmount);
conf.setFitnessFunction(myFunc);
// Now we need to tell the Configuration object how we want our
// Chromosomes to be setup. We do that by actually creating a
// sample Chromosome and then setting it on the Configuration
// object. As mentioned earlier, we want our Chromosomes to
// each have four genes, one for each of the coin types. We
// want the values of those genes to be integers, which represent
// how many coins of that type we have. We therefore use the
// IntegerGene class to represent each of the genes. That class
// also lets us specify a lower and upper bound, which we set
// to sensible values for each coin type.
// --------------------------------------------------------------
Gene[] sampleGenes = new Gene[4];
sampleGenes[0] = new IntegerGene(conf, 0, 3); // Quarters
sampleGenes[1] = new IntegerGene(conf, 0, 2); // Dimes
sampleGenes[2] = new IntegerGene(conf, 0, 1); // Nickels
sampleGenes[3] = new IntegerGene(conf, 0, 4); // Pennies
Chromosome sampleChromosome = new Chromosome(conf, sampleGenes);
conf.setSampleChromosome(sampleChromosome);
// Finally, we need to tell the Configuration object how many
// Chromosomes we want in our population. The more Chromosomes,
// the larger the number of potential solutions (which is good
// for finding the answer), but the longer it will take to evolve
// the population each round. We'll set the population size to
// 500 here.
// --------------------------------------------------------------
conf.setPopulationSize(30000);
Genotype population = Genotype.randomInitialGenotype(conf);
for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) {
population.evolve();
}
IChromosome bestSolutionSoFar = population.getFittestChromosome();
当我打印时:
System.out.println(population.getConfiguration().isPreserveFittestIndividual());
我看到它是false
。我想念什么吗?