出于学习目的,我想在 Tensorflow 中构建自己的 LSTM 模型。问题是,如何训练是使用上一个时间步的状态来初始化某个时间步的状态。Tensorflow 中是否有这种机制?
class Lstm:
def __init__(self, x, steps):
self.initial = tf.placeholder(tf.float32, [None, size])
self.state = self.initial
for _ in range(steps):
x = self.layer_lstm(x, 100)
x = self.layer_softmax(x, 10)
self.prediction = x
def step_lstm(self, x, size):
stream = self.layer(x, size)
input_ = self.layer(x, size)
forget = self.layer(x, size, bias=1)
output = self.layer(x, size)
self.state = stream * input_ + self.state * forget
x = self.state * output
return x
def layer_softmax(self, x, size):
x = self.layer(x, size)
x = tf.nn.softmax(x)
return x
def layer(self, x, size, bias=0.1):
in_size = int(x.get_shape()[1])
weight = tf.Variable(tf.truncated_normal([in_size, size], stddev=0.1))
bias = tf.Variable(tf.constant(bias, shape=[size]))
x = tf.matmul(x, weight) + bias
return x