我的犯罪分类数据集具有指标特征,例如has_rifle
.
工作是训练和预测数据点是否是罪犯。该指标是加权平均绝对误差,如果这个人是罪犯,并且模型预测他/她不是,那么权重很大5
。如果此人不是罪犯并且模型预测他/她是,那么权重为1
。否则模型会正确预测,权重为0
。
我已经使用classif:multinom
inmlr
中的方法R
,并将阈值调整为1/6
。结果不是那么好。Adaboost
稍微好一点。虽然两者都不是完美的。
我想知道在这种稀疏{0,1}
矩阵的二元分类问题中通常使用哪种方法?以及如何提高加权平均绝对误差度量的性能?