0

我正在尝试使用 Flink 中的 RollingSink 将序列化为 AVRO 的案例类写入 HDFS。为了使 avro 文件可以被 HDFS 反序列化,我使用了包装 FSDataOutputStream 的 DataFileWriter。当我尝试在 DataFileWriter 和 FSDataOutputStream 之间进行同步以关闭 HDFS 上的数据文件时,会引发异常,实际上我在每个其他文件中都获取了数据。有没有办法在 Flink Writer 实现中将 fs 流与 Avro writer 同步?

我曾尝试使用 DataFileWriter close() flush() sync() fsync() 但都失败了。同步方法似乎表现最好。我也尝试过在 write 方法中同步,这似乎有效,但仍然产生错误,我无法验证是否所有数据都保存到文件中。

class AvroWriter[OutputContainer <: org.apache.avro.specific.SpecificRecordBase] extends Writer[OutputContainer] {

  val serialVersionUID = 1L

  var outputStream: FSDataOutputStream = null
  var outputWriter: DataFileWriter[OutputContainer] = null

  override def open(outStream: FSDataOutputStream): Unit = {
    if (outputStream != null) {
      throw new IllegalStateException("AvroWriter has already been opened.")
    }
    outputStream = outStream

    if(outputWriter == null) {
      val writer: DatumWriter[OutputContainer] = new SpecificDatumWriter[OutputContainer](OutputContainer.SCHEMA$)
      outputWriter = new DataFileWriter[OutputContainer](writer)
      outputWriter.create(OutputContainer.SCHEMA$, outStream)
    }
  }

  override def flush(): Unit = {}

  override def close(): Unit = {
    if(outputWriter != null) {
      outputWriter.sync()
    }
    outputStream = null
  }

  override def write(element: OutputContainer) = {
    if (outputStream == null) {
      throw new IllegalStateException("AvroWriter has not been opened.")
    }
    outputWriter.append(element)
  }

  override def duplicate(): AvroWriter[OutputContainer] = {
    new AvroWriter[OutputContainer]
  }
}

尝试使用上述代码运行 RollingSink 会出现以下异常:

java.lang.Exception: Could not forward element to next operator
        at org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcher.run(LegacyFetcher.java:222)
        at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08.run(FlinkKafkaConsumer08.java:316)
        at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:78)
        at org.apache.flink.streaming.runtime.tasks.SourceStreamTask.run(SourceStreamTask.java:56)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:224)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:559)
        at java.lang.Thread.run(Thread.java:744)
Caused by: java.lang.RuntimeException: Could not forward element to next operator
        at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:354)
        at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:337)
        at org.apache.flink.streaming.api.operators.StreamSource$NonTimestampContext.collect(StreamSource.java:158)
        at org.apache.flink.streaming.connectors.kafka.internals.LegacyFetcher$SimpleConsumerThread.run(LegacyFetcher.java:664)
Caused by: java.nio.channels.ClosedChannelException
        at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1353)
        at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:98)
        at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
        at java.io.DataOutputStream.write(DataOutputStream.java:107)
        at org.apache.avro.file.DataFileWriter$BufferedFileOutputStream$PositionFilter.write(DataFileWriter.java:446)
        at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
        at java.io.BufferedOutputStream.write(BufferedOutputStream.java:121)
        at org.apache.avro.io.BufferedBinaryEncoder$OutputStreamSink.innerWrite(BufferedBinaryEncoder.java:216)
        at org.apache.avro.io.BufferedBinaryEncoder.writeFixed(BufferedBinaryEncoder.java:150)
        at org.apache.avro.file.DataFileStream$DataBlock.writeBlockTo(DataFileStream.java:366)
        at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:383)
        at org.apache.avro.file.DataFileWriter.sync(DataFileWriter.java:401)
        at pl.neptis.FlinkKafkaConsumer.utils.AvroWriter.close(AvroWriter.scala:36)
        at org.apache.flink.streaming.connectors.fs.RollingSink.closeCurrentPartFile(RollingSink.java:476)
        at org.apache.flink.streaming.connectors.fs.RollingSink.openNewPartFile(RollingSink.java:419)
        at org.apache.flink.streaming.connectors.fs.RollingSink.invoke(RollingSink.java:373)
        at org.apache.flink.streaming.api.operators.StreamSink.processElement(StreamSink.java:39)
        at org.apache.flink.streaming.runtime.tasks.OperatorChain$CopyingChainingOutput.collect(OperatorChain.java:351)
        ... 3 more
4

1 回答 1

0

我终于找到了解决办法。因为流是由 RollingSink 管理的,所以它不能在实现 Writer 的类中关闭。另一方面,如果 DataFileWriter 包装了一个流并且应该将一个文件转储到 hdfs,则需要进行一些同步或关闭。诀窍不是关闭 DataFileWriter 而是同步它,然后通过为其分配 null 来丢弃它(考虑到 Scala 和函数式编程,这不是很惯用的方式,但是嘿,Flink 是用 Java 开发的)。所以这个简单的技巧解决了我的问题:

override def close(): Unit = {
    if(outputWriter != null) {
      outputWriter.sync()
    }
    outputWriter = null
    outputStream = null
  }
于 2016-03-24T11:18:02.210 回答