0

我一直在编写代码来迭代地划分整数并使用以前的结果来完全划分数字,我的想法是使用以前的分区可以提高速度。到目前为止,我的性能比递归地对整数进行分区慢了 22 倍,并且由于快速耗尽内存而无法测试更大的数字。如果有人可以帮助优化代码,我将不胜感激。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.stream.Collectors;

public class Summands {
  private static HashMap<Integer, HashSet<List<Integer>>> results;
  private static HashMap<Integer, HashSet<String>> recursiveResults;

  private static void sort(int[] a) {
    //Radix sort for int array
    int i, m = a[0], exp = 1, n = a.length;
    int[] b = new int[n];
    for (i = 1; i < n; i++) {
      if (a[i] > m) {
        m = a[i];
      }
    }
    while (m / exp > 0) {
      int[] bucket = new int[n];

      for (i = 0; i < n; i++)
        bucket[(a[i] / exp) % n]++;
      for (i = 1; i < n; i++)
        bucket[i] += bucket[i - 1];
      for (i = n - 1; i >= 0; i--)
        b[--bucket[(a[i] / exp) % n]] = a[i];
      for (i = 0; i < n; i++)
        a[i] = b[i];
      exp *= n;
    }
  }

  private static void generateResults(int n) {
    //iterative partitioning
    results.put(n, new HashSet<>());
    results.get(n).add(new ArrayList<>());
    for (List<Integer> list : results.get(n)) {
      list.add(n);
    }
    for (int i = 1; i <= Math.floorDiv(n, 2); i++) {
      //get all 2 summands partitions
      int a = n - i;
      results.get(n).add(Arrays.asList(i, a));
    }
    if (n > 1) {
      //Get the rest of the partitions
      HashSet<List<Integer>> set = new HashSet<>(results.get(n));
      for (List<Integer> equ : set) {
        if (equ.size() > 1) {
          if (equ.get(1) > 1) {
            HashSet<List<Integer>> temp = results.get(equ.get(1));
            for (List<Integer> k : temp) {
              List<Integer> tempEquList = new ArrayList<>(k);
              tempEquList.add(equ.get(0));
              int[] tempEqu = tempEquList.stream()
                      .mapToInt(Integer::intValue).toArray();
              sort(tempEqu);
              results.get(n).add(Arrays.stream(tempEqu)
                      .boxed().collect(Collectors.toList()));
            }
          }
        }
      }
    }
  }

  private static void recursivePartition(int n) {
    //recursively partition
    recursiveResults.put(n, new HashSet<>());
    partition(n, n, "", n);
  }

  private static void partition(int n, int max, String prefix, int key) {
    //recursive method for partitioning
    if (n == 0) {
      recursiveResults.get(key).add(prefix);
      return;
    }

    for (int i = Math.min(max, n); i >= 1; i--) {
      partition(n - i, i, prefix + " " + i, key);
    }
  }

  public static void main(String[] args) {
    //get number of partitions to get
    int target = Integer.valueOf(args[0]);
    //time the iterative version
    long time1 = System.currentTimeMillis();
    results = new HashMap<>(target);
    //loop until done
    for (int i = 1; i <= target; i++) {
      System.out.println(i);
      generateResults(i);
    }
    //time both methods
    long time2 = System.currentTimeMillis();
    recursiveResults = new HashMap<>(target);
    for (int i = 1; i <= target; i++) {
      //loop until done
      System.out.println(i);
      recursivePartition(i);
    }
    long time3 = System.currentTimeMillis();
    System.out.println("Iterative time: " + String.valueOf(time2 - time1));
    System.out.println("Recursive time: " + String.valueOf(time3 - time2));
    /*for (Integer key : results.keySet()) {
      //For ensuring proper amount of partitions
      //for lower numbers. Primarily for testing
      System.out.println(key + ": " + results.get(key).size());
    }*/
  }
}
4

1 回答 1

0

您可以使用和方法生成一组指定数的和的组合,即整数分区。首先准备和数组的集合,然后将这些集合的对依次相乘,得到笛卡尔积mapToObjreduce

在线尝试!

int n = 7;
Set<int[]> partition = IntStream.range(0, n)
        // prepare sets of arrays of summands
        .mapToObj(i -> IntStream.rangeClosed(1, n - i)
            .mapToObj(j -> new int[]{j})
            // Stream<TreeSet<int[]>>
            .collect(Collectors.toCollection(
                // comparing the contents of two arrays
                () -> new TreeSet<>(Arrays::compare))))
        // intermediate output, sets of arrays of summands
        .peek(set -> System.out.println(
            set.stream().map(Arrays::toString).collect(Collectors.joining())))
        // sequential summation of pairs of sets up to the given number
        .reduce((set1, set2) -> set1.stream()
            // combinations of inner arrays
            .flatMap(arr1 -> {
                // sum of the elements of the first array
                int sum = Arrays.stream(arr1).sum();
                // if the specified number is reached
                if (sum == n) return Arrays.stream(new int[][]{arr1});
                // otherwise continue appending summands
                return set2.stream() // drop the combinations that are greater
                    .filter(arr2 -> Arrays.stream(arr2).sum() + sum <= n)
                    .map(arr2 -> Stream.of(arr1, arr2)
                        .flatMapToInt(Arrays::stream)
                        .sorted().toArray()); // the sorted array
            }) // set of arrays of combinations
            .collect(Collectors.toCollection( // two arrays that differ
                // only in order are considered the same partition
                () -> new TreeSet<>(Arrays::compare))))
        // otherwise an empty set of arrays
        .orElse(new TreeSet<>(Arrays::compare));
// final output, the integer partition of the specified number
partition.stream().map(Arrays::toString).forEach(System.out::println);

中间输出,一组和数数组:

[1][2][3][4][5][6][7]
[1][2][3][4][5][6]
[1][2][3][4][5]
[1][2][3][4]
[1][2][3]
[1][2]
[1]

最终输出,指定数的整数分区:

[1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 2]
[1, 1, 1, 1, 3]
[1, 1, 1, 2, 2]
[1, 1, 1, 4]
[1, 1, 2, 3]
[1, 1, 5]
[1, 2, 2, 2]
[1, 2, 4]
[1, 3, 3]
[1, 6]
[2, 2, 3]
[2, 5]
[3, 4]
[7]

另请参阅:构建有效地求和为数字的排列

于 2021-04-30T20:32:26.760 回答