我有一条RDD[(Long, String)]
S3 路径(存储桶 + 密钥)及其大小。我想以这样一种方式对它进行分区,即每个分区都获得大小总和大致相同的路径。这样,当我读取这些路径的内容时,每个分区应该有大致相同的数据量来处理。我为此编写了这个自定义分区器。
import org.apache.spark.Partitioner
import scala.collection.mutable.PriorityQueue
class S3Partitioner(partitions: Int, val totalSize: Long) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
require(totalSize >= 0, s"Number of totalSize ($totalSize) cannot be negative.")
val pq = PriorityQueue[(Int, Long)]()
(0 until partitions).foreach { partition =>
pq.enqueue((partition, totalSize / partitions))
}
def getPartition(key: Any): Int = key match {
case k: Long =>
val (partition, capacityLeft) = pq.dequeue
pq.enqueue((partition, capacityLeft - k))
partition
case _ => 0
}
def numPartitions: Int = partitions
override def equals(other: Any): Boolean = other match {
case p: S3Partitioner =>
p.totalSize == totalSize && p.numPartitions == numPartitions
case _ => false
}
override def hashCode: Int = {
(972 * numPartitions.hashCode) ^ (792 * totalSize.hashCode)
}
}
如果给分区器提供了一个键(大小)按降序排序的 RDD,那么分区器应该表现最好。当我尝试使用它时,我开始在之前工作的代码中收到此错误:
Cause: java.io.NotSerializableException: scala.collection.mutable.PriorityQueue$ResizableArrayAccess
这就是我使用它的方式:
val pathsWithSize: RDD[(Long, String)] = ...
val totalSize = pathsWithSize.map(_._1).reduce(_ + _)
new PairRDDFunctions(pathsWithSize)
.partitionBy(new S3Partitioner(5 * sc.defaultParallelism, totalSize))
.mapPartitions { iter =>
iter.map { case (_, path) => readS3(path) }
}
而且我不确定如何解决这个问题。将不胜感激任何帮助。