我正在尝试使用 deeplearning4j 训练异或网络,但我认为我并没有真正了解如何使用数据集。
我想创建一个具有两个输入、两个隐藏神经元和一个输出神经元的 NN。
这是我所拥有的:
package org.deeplearning4j.examples.xor;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.distribution.UniformDistribution;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
public class XorExample {
public static void main(String[] args) {
INDArray input = Nd4j.zeros(4, 2);
INDArray labels = Nd4j.zeros(4, 1);
input.putScalar(new int[] { 0, 0 }, 0);
input.putScalar(new int[] { 0, 1 }, 0);
input.putScalar(new int[] { 1, 0 }, 1);
input.putScalar(new int[] { 1, 1 }, 0);
input.putScalar(new int[] { 2, 0 }, 0);
input.putScalar(new int[] { 2, 1 }, 1);
input.putScalar(new int[] { 3, 0 }, 1);
input.putScalar(new int[] { 3, 1 }, 1);
labels.putScalar(new int[] { 0, 0 }, 0);
labels.putScalar(new int[] { 1, 0 }, 1);
labels.putScalar(new int[] { 2, 0 }, 1);
labels.putScalar(new int[] { 3, 0 }, 0);
DataSet ds = new DataSet(input,labels);
//Set up network configuration:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.learningRate(0.1)
.list(2)
.layer(0, new GravesLSTM.Builder().nIn(2).nOut(2)
.updater(Updater.RMSPROP)
.activation("tanh").weightInit(WeightInit.DISTRIBUTION)
.dist(new UniformDistribution(-0.08, 0.08)).build())
.layer(1, new RnnOutputLayer.Builder(LossFunction.MCXENT).activation("softmax") //MCXENT + softmax for classification
.updater(Updater.RMSPROP)
.nIn(2).nOut(1).weightInit(WeightInit.DISTRIBUTION)
.dist(new UniformDistribution(-0.08, 0.08)).build())
.pretrain(false).backprop(true)
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
net.setListeners(new ScoreIterationListener(1));
//Print the number of parameters in the network (and for each layer)
Layer[] layers = net.getLayers();
int totalNumParams = 0;
for( int i=0; i<layers.length; i++ ){
int nParams = layers[i].numParams();
System.out.println("Number of parameters in layer " + i + ": " + nParams);
totalNumParams += nParams;
}
System.out.println("Total number of network parameters: " + totalNumParams);
net.fit(ds);
Evaluation eval = new Evaluation(3);
INDArray output = net.output(ds.getFeatureMatrix());
eval.eval(ds.getLabels(), output);
System.out.println(eval.stats());
}
}
输出看起来像这样
Mär 20, 2016 7:03:06 PM com.github.fommil.jni.JniLoader liberalLoad
INFORMATION: successfully loaded C:\Users\LuckyPC\AppData\Local\Temp\jniloader5209513403648831212netlib-native_system-win-x86_64.dll
Number of parameters in layer 0: 46
Number of parameters in layer 1: 3
Total number of network parameters: 49
o.d.o.s.BaseOptimizer - Objective function automatically set to minimize. Set stepFunction in neural net configuration to change default settings.
o.d.o.l.ScoreIterationListener - Score at iteration 0 is 0.6931495070457458
Exception in thread "main" java.lang.IllegalArgumentException: Unable to getFloat row of non 2d matrix
at org.nd4j.linalg.api.ndarray.BaseNDArray.getRow(BaseNDArray.java:3640)
at org.deeplearning4j.eval.Evaluation.eval(Evaluation.java:107)
at org.deeplearning4j.examples.xor.XorExample.main(XorExample.java:80)