0

我目前正在使用 dispy 执行 10 个随机数的阶乘计算,它将任务“分发”到各个节点。但是,如果其中一个计算是大量的阶乘,比如说factorial(100),那么如果该任务需要很长时间,但 dispy仅在单个节点上运行它。

我如何确保 dispy 分解并将此任务分发到其他节点,以便它不会花费太多时间?

这是我到目前为止提出的代码,其中计算了 10 个随机数的阶乘,而第 5 次计算始终是阶乘(100):-

# 'compute' is distributed to each node running 'dispynode'

def compute(n):
    import time, socket
    ans = 1
    for i in range(1,n+1):
        ans = ans * i
    time.sleep(n)
    host = socket.gethostname()
    return (host, n,ans)

if __name__ == '__main__':
    import dispy, random
    cluster = dispy.JobCluster(compute)
    jobs = []
    for i in range(10):
        # schedule execution of 'compute' on a node (running 'dispynode')
        # with a parameter (random number in this case)
        if(i==5):
            job = cluster.submit(100)    
        else:
            job = cluster.submit(random.randint(5,20))
        job.id = i # optionally associate an ID to job (if needed later)
        jobs.append(job)
    # cluster.wait() # waits for all scheduled jobs to finish
    for job in jobs:
        host, n, ans = job() # waits for job to finish and returns results
        print('%s executed job %s at %s with %s as input and %s as output' % (host, job.id, job.start_time, n,ans))
        # other fields of 'job' that may be useful:
        # print(job.stdout, job.stderr, job.exception, job.ip_addr, job.start_time, job.end_time)
    cluster.print_status()
4

1 回答 1

0

Dispy 会按照您的定义分配任务 - 它不会让您的任务更加细化。

您可以首先创建自己的逻辑来细化任务。对于阶乘来说,这可能很容易做到。但是我想知道在您的情况下,性能问题是否是由于这一行:

time.sleep(n)

对于阶乘(100),为什么要睡 100 秒?

于 2016-06-14T21:44:21.687 回答