0

我用 scikit learn 进行多项式回归并尝试解释系数。但不知何故 scikit 不会格式化输出。所以它看起来像这样:

[ 0.,0.95545289,0.,0.20682341,-0.,0.,-0.,-0.,0.,0.,0.,-0.,0.,-0.,-0.,]

如何将系数映射到创建的特征?我到目前为止的代码:

poly = PolynomialFeatures(interaction_only=True)
X_ = poly.fit_transform(X_train_minmax)
X_test1 = poly.fit_transform(X_test_minmax)

lasso_model = linear_model.LassoCV(cv = 10, copy_X = True, normalize = False)
lasso_fit = lasso_model.fit(X_, y_train)
lasso_path = lasso_model.score(X_, y_train)
y_pred= lasso_model.predict(X_test1)
lasso_model.coef_

谢谢!

4

2 回答 2

0

根据中的文档PolynomialFeatures

powers_[i, j]是第 i 个输出中第 j 个输入的指数。

所以这样的事情应该有效:

columns = ['_'.join(['x{var}^{exp}'.format(var=var, exp=exp) for var, exp in enumerate(a[i, :])]) for i in range(a.shape[0])
zip(columns, lasso_model.coef_)

重要的一行是第一行。:)

于 2016-03-12T16:41:05.977 回答
0

让我们假设您正在运行二次多项式回归。所以,

poly = PolynomialFeature(degree =2)  #generate a polynomial object
X_ = poly.fit_transform(input_data)  #ndarray to be used for regression.

在哪里input_data = [X1,X2,X3,...] #actually ndarray represented as a List for simplicity

要在列表中找到(比如说)X1 因子存在的索引Lasso.coef_,即 X1、X1**2、X1*X2、X1*X3、...X1*Xn,请使用以下命令

list_of_index = []

for j in range(len(input_data)):#iterate over each input, X1, X2, etc temp =[] for i in X_.shape[1]:#iterate over the polynomial ndarray object columnwise if poly.powers_[i,j] != 0: temp.append(i) list_of_index.append(temp) list_of_index 将是一个列表列表,其中包含具有 X1、X2 等因子的位置的索引。

例子:

对于仅使用 X1 和 X2 的二度回归,生成的 ndarray 将是[1 , X1, X2, X1**2, X1*X2, X2**2]

list_of_lists 将是 [[1,3,4],[2,4,5]]

您可以使用它来访问lasso_model.coef_

于 2016-08-30T07:46:43.277 回答