我 每次运行我的java代码时都会对我使用ELKI
的数据进行聚类,我得到完全不同的聚类结果,这是正常的还是我应该做些什么来使我的输出几乎稳定?KMeansLloyd<NumberVector>
with k=3
这是我从elki教程中获得的代码
DatabaseConnection dbc = new ArrayAdapterDatabaseConnection(a);
// Create a database (which may contain multiple relations!)
Database db = new StaticArrayDatabase(dbc, null);
// Load the data into the database (do NOT forget to initialize...)
db.initialize();
// Relation containing the number vectors:
Relation<NumberVector> rel = db.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
// We know that the ids must be a continuous range:
DBIDRange ids = (DBIDRange) rel.getDBIDs();
// K-means should be used with squared Euclidean (least squares):
//SquaredEuclideanDistanceFunction dist = SquaredEuclideanDistanceFunction.STATIC;
CosineDistanceFunction dist= CosineDistanceFunction.STATIC;
// Default initialization, using global random:
// To fix the random seed, use: new RandomFactory(seed);
RandomlyGeneratedInitialMeans init = new RandomlyGeneratedInitialMeans(RandomFactory.DEFAULT);
// Textbook k-means clustering:
KMeansLloyd<NumberVector> km = new KMeansLloyd<>(dist, //
3 /* k - number of partitions */, //
0 /* maximum number of iterations: no limit */, init);
// K-means will automatically choose a numerical relation from the data set:
// But we could make it explicit (if there were more than one numeric
// relation!): km.run(db, rel);
Clustering<KMeansModel> c = km.run(db);
// Output all clusters:
int i = 0;
for(Cluster<KMeansModel> clu : c.getAllClusters()) {
// K-means will name all clusters "Cluster" in lack of noise support:
System.out.println("#" + i + ": " + clu.getNameAutomatic());
System.out.println("Size: " + clu.size());
System.out.println("Center: " + clu.getModel().getPrototype().toString());
// Iterate over objects:
System.out.print("Objects: ");
for(DBIDIter it = clu.getIDs().iter(); it.valid(); it.advance()) {
// To get the vector use:
NumberVector v = rel.get(it);
// Offset within our DBID range: "line number"
final int offset = ids.getOffset(it);
System.out.print(v+" " + offset);
// Do NOT rely on using "internalGetIndex()" directly!
}
System.out.println();
++i;
}