我正在开发的是最初整个数独板是空的。其中一个随机单元格(81 个)填充了随机值(1-9)。
现在我想使用蛮力方法填充所有剩余的单元格。
谷歌搜索后我了解到,我们应该从第一个单元格开始并用 1 填充它(如果它有效),然后用 2 填充第二个单元格(如果它有效,我们将开始检查一个大于最后填充的单元格,在本例中为 1,一旦达到 9,我们将其重置为 1)。
问题是它不能正常工作!
任何人都可以将我链接到确切的算法。
这是回溯方法的实现:
import java.util.Random;
public class Sudoku {
public static void main(String[] args) {
Random rand = new Random();
int r = rand.nextInt(9);
int c = rand.nextInt(9);
int value = rand.nextInt(9) + 1;
Board board = new Board();
board.set(r, c, value);
System.out.println(board);
solve(board, 0);
System.out.println(board);
}
private static boolean solve(Board board, int at) {
if (at == 9*9)
return true;
int r = at / 9;
int c = at % 9;
if (board.isSet(r, c))
return solve(board, at + 1);
for (int value = 1; value <= 9; value++) {
if (board.canSet(r, c, value)) {
board.set(r, c, value);
if (solve(board, at + 1))
return true;
board.unSet(r, c);
}
}
return false;
}
static class Board {
private int[][] board = new int[9][9];
private boolean[][] rs = new boolean[9][10];
private boolean[][] cs = new boolean[9][10];
private boolean[][][] bs = new boolean[3][3][10];
public Board() {}
public boolean canSet(int r, int c, int value) {
return !isSet(r, c) && !rs[r][value] && !cs[c][value] && !bs[r/3][c/3][value];
}
public boolean isSet(int r, int c) {
return board[r][c] != 0;
}
public void set(int r, int c, int value) {
if (!canSet(r, c, value))
throw new IllegalArgumentException();
board[r][c] = value;
rs[r][value] = cs[c][value] = bs[r/3][c/3][value] = true;
}
public void unSet(int r, int c) {
if (isSet(r, c)) {
int value = board[r][c];
board[r][c] = 0;
rs[r][value] = cs[c][value] = bs[r/3][c/3][value] = false;
}
}
public String toString() {
StringBuilder ret = new StringBuilder();
for (int r = 0; r < 9; r++) {
for (int c = 0; c < 9; c++)
ret.append(board[r][c]);
ret.append("\n");
}
return ret.toString();
}
}
}
我使用了一种没有回溯的方法,尽管可能是 while 循环。引用一本算法书,我读过“递归中的任何东西都不能使用迭代来复制”。
我一直在用我的眼睛来检查这一点,因为我不能把我的头绕在递归方法上,即使递归是相对理解的:
这个方法,我写了一些指导,在网格检查器中有一个错误,当我发现它时,它似乎现在可以工作了。我假设它是因为很难找到完整且有效的代码。IOS SDK。
#define WIDTH 9
#define HEIGHT 9
@interface ViewController ()
//- (BOOL) numberConflicts:(int)testNum;
- (BOOL) number:(int)n conflictsWithRow:(int)r;
- (BOOL) number:(int)n conflictsWithColumn:(int)c;
- (BOOL) number:(int)n conflictsWithSquareInPointX:(int)x andPointY:(int)y;
- (BOOL) number:(int)n conflictsAtGridPointX:(int)xPoint andPointY:(int)yPoint;
- (int) incrementSudokuValue:(int)v;
@end
static int sudoku[WIDTH][HEIGHT];
@implementation ViewController
- (void)viewDidLoad
{
[super viewDidLoad];
/// Initialize it
for (int x = 0; x < WIDTH; x++)
{
for (int y = 0; y < HEIGHT; y++)
{
sudoku[x][y] = 0;
}
}
///
int tries = 0;
for (int j = 0; j < HEIGHT; j++)
{
for (int i = 0; i < WIDTH; i++)
{
int num = arc4random()%9 + 1;
while ([self number:num conflictsAtGridPointX:i andPointY:j])
{
num = [self incrementSudokuValue:num];
tries++;
if (tries > 10) { //restart the column
tries = 0;
for(int count = 0; count < WIDTH; count++)
{
sudoku[count][j] = 0;
}
i = 0;
}
}
if(sudoku[i][j] == 0)
sudoku[i][j] = num;
tries = 0;
for (int y = 0; y < HEIGHT; y++)
{
for (int x = 0; x < WIDTH; x++)
{
printf("%i ", sudoku[x][y]);
}
printf("\n");
}
printf("\n");
}
}
for (int x = 0; x < WIDTH; x++)
{
for (int y = 0; y < HEIGHT; y++)
{
printf("%i ", sudoku[y][x]);
}
printf("\n"); //newline
}
// Do any additional setup after loading the view, typically from a nib.
}
- (void)didReceiveMemoryWarning
{
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.
}
- (BOOL) number:(int)n conflictsWithRow:(int)r;
{
for (int y = 0; y < HEIGHT; y++) {
if (sudoku[y][r] == n) {
return YES;
}
}
return NO;
}
- (BOOL) number:(int)n conflictsWithColumn:(int)c;
{
for (int x = 0; x < WIDTH; x++) {
if (sudoku[c][x] == n) {
return YES;
}
}
return NO;
}
- (BOOL) number:(int)n conflictsAtGridPointX:(int)xPoint andPointY:(int)yPoint;
{
if ([self number:n conflictsWithRow:yPoint])
{
return YES;
}
if ([self number:n conflictsWithColumn:xPoint])
{
return YES;
}
if ([self number:n conflictsWithSquareInPointX:xPoint andPointY:yPoint]) {
return YES;
}
return NO;
}
- (BOOL) number:(int)n conflictsWithSquareInPointX:(int)x andPointY:(int)y;
{
int leftX = x - (x % 3); //used to use int division
// leftX *= 3;
int topY = y - (y % 3);
// topY *= 3;
int rightX = leftX + 2;
int bottomY = topY + 2;
for(int subY = topY; subY <= bottomY; subY++) //bug was here, used < instead of less N equal to...
{
for ( int subX = leftX; subX <= rightX; subX++)
{
if (sudoku[subX][subY] == n) {
return YES;
}
}
}
NSLog(@"Testing grid at %i, %i", x/3, y/3);
NSLog(@"LeftX: %i TopY: %i", leftX, topY);
return NO;
}
- (int) incrementSudokuValue:(int)v;
{
if (v < 9) {
v++;
return v;
}
return 1;
}
注意:头文件是空的,如果需要,可以将其粘贴到 iOS 单视图应用程序中。
注意:可能会无限循环(上面有时会这样做,但速度非常快),可能需要另一个更全局的“尝试”变量,并重新启动算法以确保安全,或者给它一个种子/两者都做
编辑:如果源网格是可解的(或不存在的),下面的内容应该可以避免无限循环
#define WIDTH 9
#define HEIGHT 9
@interface ViewController ()
//- (BOOL) numberConflicts:(int)testNum;
- (BOOL) number:(int)n conflictsWithRow:(int)r;
- (BOOL) number:(int)n conflictsWithColumn:(int)c;
- (BOOL) number:(int)n conflictsWithSquareInPointX:(int)x andPointY:(int)y;
- (BOOL) number:(int)n conflictsAtGridPointX:(int)xPoint andPointY:(int)yPoint;
- (int) incrementSudokuValue:(int)v;
@end
static int sudoku[WIDTH][HEIGHT];
@implementation ViewController
- (BOOL) fillGridWithNext:(int)next;
{
for (int y = 0; y < HEIGHT; y++)
{
for (int x = 0; x < WIDTH; x++)
{
if (sudoku[x][y] != 0)
{
if (x == 8 && y == 8) {
return YES;
}
continue;
}
for (int count = 0; count < (HEIGHT-1); count++)
{
if ([self number:next conflictsAtGridPointX:x andPointY:y])
{
next = [self incrementSudokuValue:next];
}
else
{
sudoku[x][y] = next;
if( [self fillGridWithNext:arc4random()%9+1])
{
return YES;
}
}
}
sudoku[x][y] = 0;
return NO;
}
}
return NO;
}
- (void)viewDidLoad
{
[super viewDidLoad];
/// Initialize it
for (int x = 0; x < WIDTH; x++)
{
for (int y = 0; y < HEIGHT; y++)
{
sudoku[x][y] = 0;
}
}
sudoku[0][0]=9;
int next;
next = (arc4random()%9)+1;
if( [self fillGridWithNext:next]) //seeded
{
NSLog(@"Solved");
}
else
{
NSLog(@"No solution");
}
for (int x = 0; x < WIDTH; x++)
{
for (int y = 0; y < HEIGHT; y++)
{
printf("%i ", sudoku[y][x]);
}
printf("\n"); //newline
}
// Do any additional setup after loading the view, typically from a nib.
}
- (void)didReceiveMemoryWarning
{
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.
}
- (BOOL) number:(int)n conflictsWithRow:(int)r;
{
for (int y = 0; y < HEIGHT; y++) {
if (sudoku[y][r] == n) {
return YES;
}
}
return NO;
}
- (BOOL) number:(int)n conflictsWithColumn:(int)c;
{
for (int x = 0; x < WIDTH; x++) {
if (sudoku[c][x] == n) {
return YES;
}
}
return NO;
}
- (BOOL) number:(int)n conflictsAtGridPointX:(int)xPoint andPointY:(int)yPoint;
{
if ([self number:n conflictsWithRow:yPoint])
{
return YES;
}
if ([self number:n conflictsWithColumn:xPoint])
{
return YES;
}
if ([self number:n conflictsWithSquareInPointX:xPoint andPointY:yPoint]) {
return YES;
}
return NO;
}
- (BOOL) number:(int)n conflictsWithSquareInPointX:(int)x andPointY:(int)y;
{
int leftX = x - (x % 3); //used to use int division
// leftX *= 3;
int topY = y - (y % 3);
// topY *= 3;
int rightX = leftX + 2;
int bottomY = topY + 2;
for(int subY = topY; subY <= bottomY; subY++) //bug was here, used < instead of less N equal to...
{
for ( int subX = leftX; subX <= rightX; subX++)
{
if (sudoku[subX][subY] == n) {
return YES;
}
}
}
NSLog(@"Testing grid at %i, %i", x/3, y/3);
NSLog(@"LeftX: %i TopY: %i", leftX, topY);
return NO;
}
- (int) incrementSudokuValue:(int)v;
{
if (v < 9) {
v++;
return v;
}
return 1;
}
@end
总结:第一个版本有缺陷,但(大部分)完成了工作。它随机生成每一行,如果该行无效,它会擦除并重新开始。这将消除源网格,并且可以永远存在,但大部分时间都有效。
较低的代码使用递归。我认为它不能正确回溯,但它在我的测试中解决了空的和半种子的网格。我想我需要保存一个“状态”网格来回溯,但我没有这样做。我发布两者,因为他们都回答“蛮力”......我自己,我应该研究递归,我无法解释为什么较低的工作,我个人可以使用帮助来做这件事。
注意:第一个在完成时会在一眨眼左右完成......如果速度对您的应用程序意味着更多的可靠性(在这种情况下有点违反直觉,无限循环,呵呵)。
这个简单的随机游走算法也应该可以工作(但效率低下 - 使用风险自负!!!):
编辑: - 为无法解决的解决方案添加了修复。
对于网格中的每个空单元格 数组 = Get_Legal_Numbers_for_cell(row,col); 如果(数组为空){ Clear_All_cells() } 别的 { number = Random_number_from(array); Put_Number_in_Cell(数字); }
编辑 2
如果有人在这里感兴趣,这里描述了使用基于随机的搜索解决数独的方法。