这是一种方法,我们首先生成一个分段仿射马铃薯,然后通过插值对其进行平滑处理。插值思想基于采用 DFT,然后将低频保持原样,在高频处用零填充,并采用逆 DFT。
这是只需要标准 Python 库的代码:
import cmath
from math import atan2
from random import random
def convexHull(pts): #Graham's scan.
xleftmost, yleftmost = min(pts)
by_theta = [(atan2(x-xleftmost, y-yleftmost), x, y) for x, y in pts]
by_theta.sort()
as_complex = [complex(x, y) for _, x, y in by_theta]
chull = as_complex[:2]
for pt in as_complex[2:]:
#Perp product.
while ((pt - chull[-1]).conjugate() * (chull[-1] - chull[-2])).imag < 0:
chull.pop()
chull.append(pt)
return [(pt.real, pt.imag) for pt in chull]
def dft(xs):
pi = 3.14
return [sum(x * cmath.exp(2j*pi*i*k/len(xs))
for i, x in enumerate(xs))
for k in range(len(xs))]
def interpolateSmoothly(xs, N):
"""For each point, add N points."""
fs = dft(xs)
half = (len(xs) + 1) // 2
fs2 = fs[:half] + [0]*(len(fs)*N) + fs[half:]
return [x.real / len(xs) for x in dft(fs2)[::-1]]
pts = convexHull([(random(), random()) for _ in range(10)])
xs, ys = [interpolateSmoothly(zs, 100) for zs in zip(*pts)] #Unzip.
这会产生类似这样的东西(初始点和插值):
这是另一个尝试:
pts = [(random() + 0.8) * cmath.exp(2j*pi*i/7) for i in range(7)]
pts = convexHull([(pt.real, pt.imag ) for pt in pts])
xs, ys = [interpolateSmoothly(zs, 30) for zs in zip(*pts)]
这些偶尔会有扭结和凹陷。这就是这个 blob 家族的性质。
请注意,SciPy 具有凸包和 FFT,因此上述函数可以用它们代替。