我有 7 个 cassandra5 nodes with 32 cores and 32G memory, and 4 nodes with 4 cores and 64G memory
节点8th node
(我为他们使用了spark-cassandra-connector。现在我的 cassandra 有近 10 亿条记录和 30 个字段,我编写了包含以下代码段的 scala:
def startOneCache(): DataFrame = {
val conf = new SparkConf(true)
.set("spark.cassandra.connection.host", "192.168.0.184")
.set("spark.cassandra.auth.username", "username")
.set("spark.cassandra.auth.password", "password")
.set("spark.driver.maxResultSize", "4G")
.set("spark.executor.memory", "12G")
.set("spark.cassandra.input.split.size_in_mb","64")
val sc = new SparkContext("spark://192.168.0.131:7077", "statistics", conf)
val cc = new CassandraSQLContext(sc)
val rdd: DataFrame = cc.sql("select user_id,col1,col2,col3,col4,col5,col6
,col7,col8 from user_center.users").limit(100000192)
val rdd_cache: DataFrame = rdd.cache()
rdd_cache.count()
return rdd_cache
}
spark-submit
在我用来运行上述代码的 spark 的 master中,当执行语句:时rdd_cache.count()
,我ERROR
在一个工作节点中得到了一个192.168.0.185
::
16/03/08 15:38:57 INFO ShuffleBlockFetcherIterator: Started 4 remote fetches in 221 ms
16/03/08 15:43:49 WARN MemoryStore: Not enough space to cache rdd_6_0 in memory! (computed 4.6 GB so far)
16/03/08 15:43:49 INFO MemoryStore: Memory use = 61.9 KB (blocks) + 4.6 GB (scratch space shared across 1 tasks(s)) = 4.6 GB. Storage limit = 6.2 GB.
16/03/08 15:43:49 WARN CacheManager: Persisting partition rdd_6_0 to disk instead.
16/03/08 16:13:11 ERROR Executor: Managed memory leak detected; size = 4194304 bytes, TID = 24002
16/03/08 16:13:11 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 24002)
java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
我只是认为最终的错误Size exceeds Integer.MAX_VALUE
是由 warn:16/03/08 15:43:49 WARN MemoryStore: Not enough space to cache rdd_6_0 in memory! (computed 4.6 GB so far)
之前引起的,但我不知道为什么,或者我是否应该设置一个大于.set("spark.executor.memory", "12G")
,我应该怎么做才能纠正这个?