更新:请坚持这个问题。我发现这可能是 Spark 1.5 本身的问题,因为我没有使用官方版本的 Spark。我会不断更新这个问题。谢谢!
最近在使用 Spark-CSV 将 CSV 导入 Spark 中的 DataFrame 时,我注意到一个奇怪的错误。
这是我的示例代码:
object sparktry
{
def main(args: Array[String])
{
AutoLogger.setLevel("INFO")
val sc = SingletonSparkContext.getInstance()
val sql_context = SingletonSQLContext.getInstance(sc)
val options = new collection.mutable.HashMap[String, String]()
options += "header" -> "true"
options += "charset" -> "UTF-8"
val customSchema = StructType(Array(
StructField("Year", StringType),
StructField("Brand", StringType),
StructField("Category", StringType),
StructField("Model", StringType),
StructField("Sales", DoubleType)))
val dataFrame = sql_context.read.format("com.databricks.spark.csv")
.options(options)
.schema(customSchema)
.load("hdfs://myHDFSserver:9000/BigData/CarSales.csv")
dataFrame.head(10).foreach(x => AutoLogger.info(x.toString))
}
}
CarSales 是一个非常小的 csv。我注意到当spark.master
is not时local
,设置spark.executor.memory
为 16GB 以上会导致 DataFrame 损坏。该程序的输出如下所示:(我从日志中复制了文本,在本例spark.executor.memory
中设置为 32GB)
16/03/07 12:39:50.190 INFO DAGScheduler: Job 1 finished: head at sparktry.scala:35, took 8.009183 s
16/03/07 12:39:50.225 INFO AutoLogger$: [ , , ,ries ,142490.0]
16/03/07 12:39:50.225 INFO AutoLogger$: [ , , ,ries ,112464.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,90960.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,100910.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,94371.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,54142.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,14773.0]
16/03/07 12:39:50.226 INFO AutoLogger$: [ , , ,ries ,12276.0]
16/03/07 12:39:50.227 INFO AutoLogger$: [ , , ,ries ,9254.0]
16/03/07 12:39:50.227 INFO AutoLogger$: [ , , ,ries ,12253.0]
虽然文件的前 10 行是:
1/1/2007,BMW,Compact,BMW 3-Series,142490.00
1/1/2008,BMW,Compact,BMW 3-Series,112464.00
1/1/2009,BMW,Compact,BMW 3-Series,90960.00
1/1/2010,BMW,Compact,BMW 3-Series,100910.00
1/1/2011,BMW,Compact,BMW 3-Series,94371.00
1/1/2007,BMW,Compact,BMW 5-Series,54142.00
1/1/2007,BMW,Fullsize,BMW 7-Series,14773.00
1/1/2008,BMW,Fullsize,BMW 7-Series,12276.00
1/1/2009,BMW,Fullsize,BMW 7-Series,9254.00
1/1/2010,BMW,Fullsize,BMW 7-Series,12253.00
我注意到spark.executor.memory
在我的机器上只更改为 16GB,前 10 行是正确的,但将其设置为超过 16GB 会导致损坏。
更重要的是:在我的一台具有 256GB 内存的服务器上,将其设置为 16GB 也会产生此错误。相反,将其设置为 48GB 将使其正常工作。另外,我尝试打印dataFrame.rdd
,它表明RDD的内容是正确的,而数据框本身是不正确的。
有人对这个问题有任何想法吗?
谢谢!