127

我想知道如何使用带有 numpy 版本 1.5.0 的 python 2.6.6 用零填充 2D numpy 数组。但这些都是我的局限。因此我不能使用np.pad. 例如,我想a用零填充,使其形状匹配b. 我想这样做的原因是我可以这样做:

b-a

这样

>>> a
array([[ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.]])
>>> b
array([[ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.]])
>>> c
array([[1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0]])

我能想到的唯一方法是追加,但这看起来很丑陋。是否有可能使用更清洁的解决方案b.shape

编辑,谢谢 MSeiferts 的回答。我不得不清理一下,这就是我得到的:

def pad(array, reference_shape, offsets):
    """
    array: Array to be padded
    reference_shape: tuple of size of ndarray to create
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
    """

    # Create an array of zeros with the reference shape
    result = np.zeros(reference_shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = array
    return result
4

6 回答 6

229

NumPy 1.7.0(何时numpy.pad添加)现在已经很老了(它于 2013 年发布)所以即使问题要求一种不使用该功能的方法,我认为了解如何使用numpy.pad.

其实很简单:

>>> import numpy as np
>>> a = np.array([[ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.]])
>>> np.pad(a, [(0, 1), (0, 1)], mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

在这种情况下,我使用的0是默认值mode='constant'。但它也可以通过显式传递来指定:

>>> np.pad(a, [(0, 1), (0, 1)], mode='constant', constant_values=0)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

以防第二个参数 ( [(0, 1), (0, 1)]) 看起来令人困惑:每个列表项(在本例中为元组)对应一个维度,其中的项表示之前(第一个元素)和之后(第二个元素)的填充。所以:

[(0, 1), (0, 1)]
         ^^^^^^------ padding for second dimension
 ^^^^^^-------------- padding for first dimension

  ^------------------ no padding at the beginning of the first axis
     ^--------------- pad with one "value" at the end of the first axis.

在这种情况下,第一个轴和第二个轴的填充是相同的,因此也可以只传入 2 元组:

>>> np.pad(a, (0, 1), mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果之前和之后的填充相同,甚至可以省略元组(但在这种情况下不适用):

>>> np.pad(a, 1, mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.]])

或者,如果轴之前和之后的填充相同但不同,您也可以省略内部元组中的第二个参数:

>>> np.pad(a, [(1, ), (2, )], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

但是我倾向于总是使用显式的,因为它很容易出错(当 NumPys 的期望与你的意图不同时):

>>> np.pad(a, [1, 2], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

这里 NumPy 认为你想在每个轴之前用 1 个元素和在每个轴之后用 2 个元素填充所有轴!即使您打算在轴 1 中填充 1 个元素,在轴 2 中填充 2 个元素。

我使用元组列表进行填充,注意这只是“我的约定”,您还可以使用列表列表或元组元组,甚至数组元组。NumPy 只检查参数的长度(或者如果它没有长度)和每个项目的长度(或者如果它有长度)!

于 2017-09-08T11:57:49.123 回答
185

非常简单,您可以使用参考形状创建一个包含零的数组:

result = np.zeros(b.shape)
# actually you can also use result = np.zeros_like(b) 
# but that also copies the dtype not only the shape

然后在需要的地方插入数组:

result[:a.shape[0],:a.shape[1]] = a

瞧,您已经填充了它:

print(result)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果您定义左上角元素应插入的位置,也可以使其更通用

result = np.zeros_like(b)
x_offset = 1  # 0 would be what you wanted
y_offset = 1  # 0 in your case
result[x_offset:a.shape[0]+x_offset,y_offset:a.shape[1]+y_offset] = a
result

array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.]])

但是请注意,您的偏移量不要超过允许的值。例如x_offset = 2,这将失败。


如果您有任意数量的维度,您可以定义一个切片列表来插入原始数组。我发现玩一下很有趣,并创建了一个填充函数,只要数组和参考具有相同的维数并且偏移量不太大,它就可以填充(带有偏移量)任意形状的数组。

def pad(array, reference, offsets):
    """
    array: Array to be padded
    reference: Reference array with the desired shape
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    """
    # Create an array of zeros with the reference shape
    result = np.zeros(reference.shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offset[dim], offset[dim] + array.shape[dim]) for dim in range(a.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = a
    return result

还有一些测试用例:

import numpy as np

# 1 Dimension
a = np.ones(2)
b = np.ones(5)
offset = [3]
pad(a, b, offset)

# 3 Dimensions

a = np.ones((3,3,3))
b = np.ones((5,4,3))
offset = [1,0,0]
pad(a, b, offset)
于 2016-03-02T15:27:34.073 回答
9

我知道您的主要问题是您需要计算d=b-a,但您的数组有不同的大小。不需要中间衬垫c

您可以在不填充的情况下解决此问题:

import numpy as np

a = np.array([[ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.]])

b = np.array([[ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.]])

d = b.copy()
d[:a.shape[0],:a.shape[1]] -=  a

print d

输出:

[[ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 3.  3.  3.  3.  3.  3.]]
于 2016-03-02T15:43:55.070 回答
1

如果您需要将 1 的栅栏添加到数组中:

>>> mat = np.zeros((4,4), np.int32)
>>> mat
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
>>> mat[0,:] = mat[:,0] = mat[:,-1] =  mat[-1,:] = 1
>>> mat
array([[1, 1, 1, 1],
       [1, 0, 0, 1],
       [1, 0, 0, 1],
       [1, 1, 1, 1]])
于 2017-11-15T09:12:26.410 回答
1

我知道我对此有点晚了,但是如果您想执行相对填充(也称为边缘填充),那么您可以通过以下方式实现它。请注意,赋值的第一个实例导致零填充,因此您可以将其用于零填充和相对填充(这是您将原始数组的边缘值复制到填充数组的位置)。

def replicate_padding(arr):
    """Perform replicate padding on a numpy array."""
    new_pad_shape = tuple(np.array(arr.shape) + 2) # 2 indicates the width + height to change, a (512, 512) image --> (514, 514) padded image.
    padded_array = np.zeros(new_pad_shape) #create an array of zeros with new dimensions
    
    # perform replication
    padded_array[1:-1,1:-1] = arr        # result will be zero-pad
    padded_array[0,1:-1] = arr[0]        # perform edge pad for top row
    padded_array[-1, 1:-1] = arr[-1]     # edge pad for bottom row
    padded_array.T[0, 1:-1] = arr.T[0]   # edge pad for first column
    padded_array.T[-1, 1:-1] = arr.T[-1] # edge pad for last column
    
    #at this point, all values except for the 4 corners should have been replicated
    padded_array[0][0] = arr[0][0]     # top left corner
    padded_array[-1][0] = arr[-1][0]   # bottom left corner
    padded_array[0][-1] = arr[0][-1]   # top right corner 
    padded_array[-1][-1] = arr[-1][-1] # bottom right corner

    return padded_array

复杂性分析:

对此的最佳解决方案是 numpy 的 pad 方法。平均运行 5 次后,具有相对填充的 np.pad 仅8%比上面定义的函数好。这表明这是相对和零填充填充的最佳方法。


#My method, replicate_padding
start = time.time()
padded = replicate_padding(input_image)
end = time.time()
delta0 = end - start

#np.pad with edge padding
start = time.time()
padded = np.pad(input_image, 1, mode='edge')
end = time.time()
delta = end - start


print(delta0) # np Output: 0.0008790493011474609 
print(delta)  # My Output: 0.0008130073547363281
print(100*((delta0-delta)/delta)) # Percent difference: 8.12316715542522%
于 2020-09-25T00:30:50.310 回答
1

Tensorflow 还实现了调整图像大小/填充图像的功能tf.image.pad tf.pad

padded_image = tf.image.pad_to_bounding_box(image, top_padding, left_padding, target_height, target_width)

padded_image = tf.pad(image, paddings, "CONSTANT")

这些功能就像 tensorflow 的其他输入管道功能一样工作,并且对于机器学习应用程序会更好地工作。

于 2021-01-09T04:50:15.690 回答