我正在创建自定义学习器,特别是我正在尝试在 mlr 框架中使用h2o机器学习算法。h2o.deeplearning 函数的“隐藏”参数是我要调整的整数向量。我通过以下方式定义了“隐藏”参数:
makeRLearner.classif.h2o_dl = function() {
makeRLearnerClassif(
cl = "classif.h2o_dl",
package = "h2o",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "activation",
values = c("Rectifier", "Tanh", "TanhWithDropout", "RectifierWithDropout", "Maxout", "MaxoutWithDropout")),
makeNumericLearnerParam(id = "epochs", default = 10, lower = 1),
makeNumericLearnerParam(id = "rate", default = 0.005, lower = 0, upper = 1),
makeIntegerVectorLearnerParam(id = "hidden", default = c(100,100)),
makeDiscreteLearnerParam(id = "loss", values = c("Automatic",
"CrossEntropy", "Quadratic", "Absolute", "Huber"))
),
properties = c("twoclass", "multiclass", "numerics", "factors", "prob","missings"),
name = "Deep Learning Neural Network with h2o",
short.name = "h2o_deeplearning_classif",
note = "tbd"
)
}
trainLearner.classif.h2o_dl = function(.learner, .task,.subset,.weights=NULL, ...) {
f = getTaskFormula(.task)
data = getTaskData(.task, .subset)
data_h2o <- as.h2o(data,
destination_frame = paste0(
"train_",
format(Sys.time(), "%m%d%y_%H%M%S")))
h2o::h2o.deeplearning(x = getTaskFeatureNames(.task),
y = setdiff(names(getTaskData(.task)),
getTaskFeatureNames(.task)),
training_frame = data_h2o, ...)
}
predictLearner.classif.h2o_dl = function(.learner, .model, .newdata, predict.method = "plug-in", ...) {
data <- as.h2o(.newdata,
destination_frame = paste0("pred_",
format(Sys.time(), "%m%d%y_%H%M%S")))
p = predict(.model$learner.model, newdata = data, method = predict.method, ...)
if (.learner$predict.type == "response")
return(as.data.frame(p)[,1]) else return(as.matrix(as.numeric(p))[,-1])
}
我尝试使用以下函数通过网格搜索调整参数“隐藏” makeDiscreteParam
:
library(mlr)
library(h2o)
h2o.init()
lrn.h2o <- makeLearner("classif.h2o_dl")
n <- getTaskSize(sonar.task)
train.set = seq(1, n, by = 2)
test.set = seq(2, n, by = 2)
mod.h2o = train(lrn.h2o, sonar.task, subset = train.set)
pred.h2o <- predict(mod.h2o,task= sonar.task, subset = train.set)
ctrl = makeTuneControlGrid()
rdesc = makeResampleDesc("CV", iters = 3L)
ps = makeParamSet(
makeDiscreteParam("hidden", values = list(c(10,10),c(100,100))),
makeDiscreteParam("rate", values = c(0.1,0.5))
)
res = tuneParams("classif.h2o_dl", task = sonar.task, resampling = rdesc,par.set = ps,control = ctrl)
这导致了警告消息
Warning messages:
1: In checkValuesForDiscreteParam(id, values) :
number of items to replace is not a multiple of replacement length
2: In checkValuesForDiscreteParam(id, values) :
number of items to replace is not a multiple of replacement length
ps
看起来像这样:
ps
Type len Def Constr Req Tunable Trafo
hidden discrete - - 10,100 - TRUE -
rate discrete - - 0.1,0.5 - TRUE -
这不会导致将隐藏参数调整为向量。我还尝试了其他也不起作用的特殊构造函数(例如makeNumericVectorParam
)。有没有人在 mlr 中调整(整数)向量的经验并可以给我一个提示?