下午好,图论中一个相对知名的数学定理(参见 Bauer 和 Jost 的“Bipartite and Neighborhood Graphs and the Spectrum of the Normalized Graph Laplace Operator”)指出,归一化拉普拉斯算子的谱总是有界当且仅当图是二分图时,才能达到上界。我正在使用 Networkx 并且拉普拉斯谱(由 Networkx 实用程序生成的数组)返回的值远大于 2。对于下面的示例,我得到的最大特征值是 18.137。该图不是二分图,因此最大特征值应严格小于 2。这是代码示例:
import networkx as nx
Graph=nx.karate_club_graph()
print nx.laplacian_spectrum(Graph)
1.137978592311377107e-15,
4.685252267013915728e-01,
9.092476638033122338e-01,
1.125010718244666030e+00,
1.259404110121709719e+00,
1.599283075429581258e+00,
1.761898621144031507e+00,
1.826055209825464098e+00,
1.955050447337369102e+00,
1.999999999999998446e+00,
1.999999999999999556e+00,
2.000000000000000000e+00,
2.000000000000000444e+00,
2.000000000000001332e+00,
2.487091734464515369e+00,
2.749157175276658815e+00,
3.013962966251617193e+00,
3.242067477421745725e+00,
3.376154092871075374e+00,
3.381966011250106874e+00,
3.472187399726446522e+00,
4.275876820141818691e+00,
4.480007671029976102e+00,
4.580792668029516790e+00,
5.378595077669420910e+00,
5.618033988749897567e+00,
6.331592223669625596e+00,
6.515544628031584296e+00,
6.996197033107128149e+00,
9.777240952801486529e+00,
1.092106753013355558e+01,
1.330612231276679225e+01,
1.705517119099513224e+01,
1.813669597300440017e+01
我知道这个 Networkx 函数很可能使用拉普拉斯谱而不是归一化拉普拉斯谱。但是,由于它们是“相似”(在数学意义上)矩阵,它们应该具有相同的特征值。我哪里错了?我可能正在做一些愚蠢的事情,我只是没有看到。