我有一个关于如何使用 Python 中的 PICOS 包解决 Min-Max 类型的优化问题的一般问题。在搜索PICOS 文档和网络时,我在这方面的信息很少。
我可以想象以下形式的一个简单示例。
给定一个矩阵 M,求 x* = argmin_x [ max_y x^TM y ],其中 x > 0, y > 0, sum(x) = 1 和 sum(y) = 1。
我尝试了一些方法,从最直接的想法开始,即在 PICOS 问题类的目标函数中使用minimax
关键字minmax
。事实证明,这些关键字都不是有效的,请参阅目标函数的包文档。此外,具有嵌套的目标函数也被证明是无效的。
在我最后一次天真的尝试中,我有两个函数,Max() 和 Min(),它们都在解决线性优化问题。外部函数 Min() 应该最小化内部函数 Max()。因此,我在外部优化问题的目标函数中使用了 Max()。
import numpy as np
import picos as pic
import cvxopt as cvx
def MinMax(mat):
## Perform a simple min-max SDP formulated as:
## Given a matrix M, find x* = argmin_x [ max_y x^T M y ], where x > 0, y > 0, sum(x) = sum(y) = 1.
prob = pic.Problem()
## Constant parameters
M = pic.new_param('M', cvx.matrix(mat))
v1 = pic.new_param('v1', cvx.matrix(np.ones((mat.shape[0], 1))))
## Variables
x = prob.add_variable('x', (mat.shape[0], 1), 'nonnegative')
## Setting the objective function
prob.set_objective('min', Max(x, M))
## Constraints
prob.add_constraint(x > 0)
prob.add_constraint((v1 | x) == 1)
## Print the problem
print("The optimization problem is formulated as follows.")
print prob
## Solve the problem
prob.solve(verbose = 0)
objVal = prob.obj_value()
solution = np.array(x.value)
return (objVal, solution)
def Max(xVar, M):
## Given a vector l, find y* such that l y* = max_y l y, where y > 0, sum(y) = 1.
prob = pic.Problem()
# Variables
y = prob.add_variable('y', (M.size[1], 1), 'nonnegative')
v2 = pic.new_param('v1', cvx.matrix(np.ones((M.size[1], 1))))
# Setting the objective function
prob.set_objective('max', ((xVar.H * M) * y))
# Constraints
prob.add_constraint(y > 0)
prob.add_constraint((v2 | y) == 1)
# Solve the problem
prob.solve(verbose = 0)
sol = prob.obj_value()
return sol
def print2Darray(arr):
# print a 2D array in a readable (matrix like) format on the standard output
for ridx in range(arr.shape[0]):
for cidx in range(arr.shape[1]):
print("%.2e \t" % arr[ridx,cidx]),
print("")
print("========")
return None
if __name__ == '__main__':
## Testing the Simple min-max SDP
mat = np.random.rand(4,4)
print("## Given a matrix M, find x* = argmin_x [ max_y x^T M y ], where x > 0, y > 0, sum(x) = sum(y) = 1.")
print("M = ")
print2Darray(mat)
(optval, solution) = MinMax(mat)
print("Optimal value of the function is %.2e and it is attained by x = %s and that of y = %.2e." % (optval, np.array_str(solution)))
当我运行上面的代码时,它给了我以下错误消息。
10:stackoverflow pavithran$ python minmaxSDP.py
## Given a matrix M, find x* = argmin_x [ max_y x^T M y ], where x > 0, y > 0, sum(x) = sum(y) = 1.
M =
1.46e-01 9.23e-01 6.50e-01 7.30e-01
6.13e-01 6.80e-01 8.35e-01 4.32e-02
5.19e-01 5.99e-01 1.45e-01 6.91e-01
6.68e-01 8.46e-01 3.67e-01 3.43e-01
========
Traceback (most recent call last):
File "minmaxSDP.py", line 80, in <module>
(optval, solution) = MinMax(mat)
File "minmaxSDP.py", line 19, in MinMax
prob.set_objective('min', Max(x, M))
File "minmaxSDP.py", line 54, in Max
prob.solve(verbose = 0)
File "/Library/Python/2.7/site-packages/picos/problem.py", line 4135, in solve
self.solver_selection()
File "/Library/Python/2.7/site-packages/picos/problem.py", line 6102, in solver_selection
raise NotAppropriateSolverError('no solver available for problem of type {0}'.format(tp))
picos.tools.NotAppropriateSolverError: no solver available for problem of type MIQP
10:stackoverflow pavithran$
在这一点上,我被卡住了,无法解决这个问题。
只是 PICOS 本身不支持 min-max 问题,还是我对问题的编码方式不正确?
请注意:我坚持使用 PICOS 的原因是理想情况下,我想知道在解决最小-最大半定规划 (SDP) 的背景下我的问题的答案。但我认为添加半定约束并不难,一旦我能弄清楚如何使用 PICOS 解决一个简单的最小-最大问题。