我在运行我的 spark 流式传输作业时遇到以下异常。
长期以来,同一个作业一直运行良好,当我向集群添加两台新机器时,我看到作业失败,但出现以下异常。
16/02/22 19:23:01 ERROR Executor: Exception in task 2.0 in stage 4229.0 (TID 22594)
java.io.IOException: java.lang.reflect.InvocationTargetException
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1257)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:59)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:744)
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:408)
at org.apache.spark.io.CompressionCodec$.createCodec(CompressionCodec.scala:68)
at org.apache.spark.io.CompressionCodec$.createCodec(CompressionCodec.scala:60)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$setConf(TorrentBroadcast.scala:73)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:167)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1254)
... 11 more
Caused by: java.lang.IllegalArgumentException
at org.apache.spark.io.SnappyCompressionCodec.<init>(CompressionCodec.scala:152)
... 20 more
在将默认压缩编解码器更改为 lzf 时,错误消失了!
如何使用 snappy 作为编解码器来解决这个问题?使用 lzf 是否有任何缺点,因为 snappy 是 spark 附带的默认编解码器?
星火版本是 1.4.0