编辑:正如评论中所指出的,如果相同的计划(相同的创建句柄)用于通过流在同一设备上同时执行 FFT,则用户负责为此类计划的每次使用管理单独的工作区域。这个问题似乎集中在流行为本身,我剩下的答案也集中在这一点上,但这是很重要的一点。
如果我使用 cuFFTSetStream() 将 cuFFT 计划放在流 0 中用于 tile 0,并且在主机将共享 cuFFT 计划的流设置为 tile 1 的流 1 之前,还没有在 GPU 上实际执行 tile 0 的 FFT它在 GPU 上发布 tile 1 的工作,该计划的 cuFFTExec() 的行为是什么?
让我假设您说的是流 1 和流 2,这样我们就可以避免围绕 NULL 流的任何可能的混淆。
CUFFT 应该尊重在计划通过 传递给 CUFFT 时为计划定义的流cufftExecXXX()
。对计划的后续更改cufftSetStream()
应该不会影响用于先前发出的cufftExecXXX()
调用的流。
我们可以使用分析器通过一个相当简单的测试来验证这一点。考虑以下测试代码:
$ cat t1089.cu
// NOTE: this code omits independent work-area handling for each plan
// which is necessary for a plan that will be shared between streams
// and executed concurrently
#include <cufft.h>
#include <assert.h>
#include <nvToolsExt.h>
#define DSIZE 1048576
#define BATCH 100
int main(){
const int nx = DSIZE;
const int nb = BATCH;
size_t ws = 0;
cufftHandle plan;
cufftResult res = cufftCreate(&plan);
assert(res == CUFFT_SUCCESS);
res = cufftMakePlan1d(plan, nx, CUFFT_C2C, nb, &ws);
assert(res == CUFFT_SUCCESS);
cufftComplex *d;
cudaMalloc(&d, nx*nb*sizeof(cufftComplex));
cudaMemset(d, 0, nx*nb*sizeof(cufftComplex));
cudaStream_t s1, s2;
cudaStreamCreate(&s1);
cudaStreamCreate(&s2);
res = cufftSetStream(plan, s1);
assert(res == CUFFT_SUCCESS);
res = cufftExecC2C(plan, d, d, CUFFT_FORWARD);
assert(res == CUFFT_SUCCESS);
res = cufftSetStream(plan, s2);
assert(res == CUFFT_SUCCESS);
nvtxMarkA("plan stream change");
res = cufftExecC2C(plan, d, d, CUFFT_FORWARD);
assert(res == CUFFT_SUCCESS);
cudaDeviceSynchronize();
return 0;
}
$ nvcc -o t1089 t1089.cu -lcufft -lnvToolsExt
$ cuda-memcheck ./t1089
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
$
我们只是连续进行两次前向 FFT,在两者之间切换流。我们将使用 nvtx标记来清楚地标识计划流关联更改请求发生的点。现在让我们看一下nvprof --print-api-trace
输出(删除冗长的启动前导码):
983.84ms 617.00us cudaMalloc
984.46ms 21.628us cudaMemset
984.48ms 37.546us cudaStreamCreate
984.52ms 121.34us cudaStreamCreate
984.65ms 995ns cudaPeekAtLastError
984.67ms 996ns cudaConfigureCall
984.67ms 517ns cudaSetupArgument
984.67ms 21.908us cudaLaunch (void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [416])
984.69ms 349ns cudaGetLastError
984.69ms 203ns cudaPeekAtLastError
984.70ms 296ns cudaConfigureCall
984.70ms 216ns cudaSetupArgument
984.70ms 8.8920us cudaLaunch (void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [421])
984.71ms 272ns cudaGetLastError
984.71ms 177ns cudaPeekAtLastError
984.72ms 314ns cudaConfigureCall
984.72ms 229ns cudaSetupArgument
984.72ms 9.9230us cudaLaunch (void spRadix0256B::kernel3Mem<unsigned int, float, fftDirection_t=-1, unsigned int=16, unsigned int=2, L1, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix3_t, unsigned int, float>) [426])
984.73ms 295ns cudaGetLastError
984.77ms - [Marker] plan stream change
984.77ms 434ns cudaPeekAtLastError
984.78ms 357ns cudaConfigureCall
984.78ms 228ns cudaSetupArgument
984.78ms 10.642us cudaLaunch (void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [431])
984.79ms 287ns cudaGetLastError
984.79ms 193ns cudaPeekAtLastError
984.80ms 293ns cudaConfigureCall
984.80ms 208ns cudaSetupArgument
984.80ms 7.7620us cudaLaunch (void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [436])
984.81ms 297ns cudaGetLastError
984.81ms 178ns cudaPeekAtLastError
984.81ms 269ns cudaConfigureCall
984.81ms 214ns cudaSetupArgument
984.81ms 7.4130us cudaLaunch (void spRadix0256B::kernel3Mem<unsigned int, float, fftDirection_t=-1, unsigned int=16, unsigned int=2, L1, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix3_t, unsigned int, float>) [441])
984.82ms 312ns cudaGetLastError
984.82ms 152.63ms cudaDeviceSynchronize
$
我们看到每个 FFT 操作需要 3 个内核调用。在这两者之间,我们看到我们的 nvtx 标记指示何时请求更改计划流,这发生在前 3 个内核启动之后,但在最后 3 个内核启动之前,这并不奇怪。最后,我们注意到基本上所有执行时间被最终cudaDeviceSynchronize()
调用吸收。所有前面的调用都是异步的,因此在执行的第一毫秒或多或少地“立即”执行。最终同步吸收了 6 个内核的所有处理时间,总计约 150 毫秒。
因此,如果cufftSetStream
要对调用的第一次迭代产生影响cufftExecC2C()
,我们希望看到前 3 个内核中的部分或全部启动到与后 3 个内核使用的流相同的流中。但是当我们查看nvprof --print-gpu-trace
输出时:
$ nvprof --print-gpu-trace ./t1089
==3757== NVPROF is profiling process 3757, command: ./t1089
==3757== Profiling application: ./t1089
==3757== Profiling result:
Start Duration Grid Size Block Size Regs* SSMem* DSMem* Size Throughput Device Context Stream Name
974.74ms 7.3440ms - - - - - 800.00MB 106.38GB/s Quadro 5000 (0) 1 7 [CUDA memset]
982.09ms 23.424ms (25600 2 1) (32 8 1) 32 8.0000KB 0B - - Quadro 5000 (0) 1 13 void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [416]
1.00551s 21.172ms (25600 2 1) (32 8 1) 32 8.0000KB 0B - - Quadro 5000 (0) 1 13 void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [421]
1.02669s 27.551ms (25600 1 1) (16 16 1) 61 17.000KB 0B - - Quadro 5000 (0) 1 13 void spRadix0256B::kernel3Mem<unsigned int, float, fftDirection_t=-1, unsigned int=16, unsigned int=2, L1, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix3_t, unsigned int, float>) [426]
1.05422s 23.592ms (25600 2 1) (32 8 1) 32 8.0000KB 0B - - Quadro 5000 (0) 1 14 void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [431]
1.07781s 21.157ms (25600 2 1) (32 8 1) 32 8.0000KB 0B - - Quadro 5000 (0) 1 14 void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>) [436]
1.09897s 27.913ms (25600 1 1) (16 16 1) 61 17.000KB 0B - - Quadro 5000 (0) 1 14 void spRadix0256B::kernel3Mem<unsigned int, float, fftDirection_t=-1, unsigned int=16, unsigned int=2, L1, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix3_t, unsigned int, float>) [441]
Regs: Number of registers used per CUDA thread. This number includes registers used internally by the CUDA driver and/or tools and can be more than what the compiler shows.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.
$
我们看到实际上前 3 个内核被发布到第一个流中,最后 3 个内核被发布到第二个流中,正如请求的那样。(并且所有内核的总执行时间大约为 150 毫秒,正如 api 跟踪输出所建议的那样。)由于底层内核启动是异步的,并且在cufftExecC2C()
调用返回之前发出,如果你仔细考虑这一点,你'我会得出结论,它必须是这样的。启动内核的流是在内核启动时指定的。(当然我认为这被认为是“首选”行为。)