当我从提供的 ec2 脚本启动时,(spark_ec2.py)
集群会使用 amazon-linux 节点分离出来。我希望它是 ubuntu。(spark_ec2.py => 我目前正在使用 brew 版本,希望这不是问题)
搜索后,我发现以下讨论类似问题的线程。但不幸的是,没有提供关于如何更改集群节点的默认操作系统的明确答案。 适用于 AWS EC-2 的 Spark AMI
除此之外,当我启动集群时,我尝试启动 spark-shell 并最终出现以下错误:
java.lang.RuntimeException: java.io.IOException: Filesystem closed
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522)
at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:194)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:238)
at org.apache.spark.sql.hive.HiveContext.executionHive$lzycompute(HiveContext.scala:218)
at org.apache.spark.sql.hive.HiveContext.executionHive(HiveContext.scala:208)
at org.apache.spark.sql.hive.HiveContext.functionRegistry$lzycompute(HiveContext.scala:462)
at org.apache.spark.sql.hive.HiveContext.functionRegistry(HiveContext.scala:461)
at org.apache.spark.sql.UDFRegistration.<init>(UDFRegistration.scala:40)
at org.apache.spark.sql.SQLContext.<init>(SQLContext.scala:330)
at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:90)
at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:101)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.spark.repl.SparkILoop.createSQLContext(SparkILoop.scala:1028)
at $iwC$$iwC.<init>(<console>:15)
at $iwC.<init>(<console>:24)
at <init>(<console>:26)
at .<init>(<console>:30)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:132)
at org.apache.spark.repl.SparkILoopInit$$anonfun$initializeSpark$1.apply(SparkILoopInit.scala:124)
at org.apache.spark.repl.SparkIMain.beQuietDuring(SparkIMain.scala:324)
at org.apache.spark.repl.SparkILoopInit$class.initializeSpark(SparkILoopInit.scala:124)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:64)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1$$anonfun$apply$mcZ$sp$5.apply$mcV$sp(SparkILoop.scala:974)
at org.apache.spark.repl.SparkILoopInit$class.runThunks(SparkILoopInit.scala:159)
at org.apache.spark.repl.SparkILoop.runThunks(SparkILoop.scala:64)
at org.apache.spark.repl.SparkILoopInit$class.postInitialization(SparkILoopInit.scala:108)
at org.apache.spark.repl.SparkILoop.postInitialization(SparkILoop.scala:64)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:991)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.IOException: Filesystem closed
at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:323)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:1057)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:554)
at org.apache.hadoop.hive.ql.session.SessionState.createRootHDFSDir(SessionState.java:599)
at org.apache.hadoop.hive.ql.session.SessionState.createSessionDirs(SessionState.java:554)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:508)
... 62 more
<console>:16: error: not found: value sqlContext
import sqlContext.implicits._
^
<console>:16: error: not found: value sqlContext
import sqlContext.sql
这是我第一次与 AWS 合作,经过多次尝试,我想出了启动集群所需的所有操作,但现在我正在处理上述两个问题,它们可能彼此相关,也可能不相关。