嗨,这是基本问题,但我无法修复它...unique()
在每列中显示唯一值,但describe()
显示 NaN。为什么...任何帮助表示赞赏。谢谢
import numpy as np
import pandas as pd
train = pd.read_csv('train.csv', header=0)
# works:
train['Pclass'].unique()
# array([3, 1, 2], dtype=int64)
train['Survived'].unique()
# array([0, 1], dtype=int64)
# not work:
train.describe(include='all')
# PassengerId Survived Pclass Name Sex \
# count 891.000000 891.000000 891.000000 891 891
# unique NaN NaN NaN 891 2
# top NaN NaN NaN Mitkoff, Mr. Mito male
# freq NaN NaN NaN 1 577
# mean 446.000000 0.383838 2.308642 NaN NaN
# std 257.353842 0.486592 0.836071 NaN NaN
# min 1.000000 0.000000 1.000000 NaN NaN
# 25% 223.500000 0.000000 2.000000 NaN NaN
# 50% 446.000000 0.000000 3.000000 NaN NaN
# 75% 668.500000 1.000000 3.000000 NaN NaN
# max 891.000000 1.000000 3.000000 NaN NaN
#
# Age SibSp Parch Ticket Fare Cabin \
# count 714.000000 891.000000 891.000000 891 891.000000 204
# unique NaN NaN NaN 681 NaN 147
# top NaN NaN NaN 347082 NaN C23 C25 C27
# freq NaN NaN NaN 7 NaN 4
# mean 29.699118 0.523008 0.381594 NaN 32.204208 NaN
# std 14.526497 1.102743 0.806057 NaN 49.693429 NaN
# min 0.420000 0.000000 0.000000 NaN 0.000000 NaN
# 25% 20.125000 0.000000 0.000000 NaN 7.910400 NaN
# 50% 28.000000 0.000000 0.000000 NaN 14.454200 NaN
# 75% 38.000000 1.000000 0.000000 NaN 31.000000 NaN
# max 80.000000 8.000000 6.000000 NaN 512.329200 NaN
#
# Embarked
# count 889
# unique 3
# top S
# freq 644
# mean NaN
# std NaN
# min NaN
# 25% NaN
# 50% NaN
# 75% NaN
# max NaN