文本数据组织为具有 20,000 个元素的向量,例如 [2, 1, 0, 0, 5, ...., 0]。第 i 个元素表示文本中第 i 个单词的频率。
地面实况标签数据也表示为具有 4,000 个元素的向量,例如 [0, 0, 1, 0, 1, ...., 0]。第 i 个元素指示第 i 个标签是否是文本的正标签。文本的标签数量因文本而异。
我有一个用于单标签文本分类的代码。
如何编辑以下代码以进行多标签文本分类?
特别是,我想知道以下几点。
- 如何使用 TensorFlow 计算准确度。
- 如何设置判断标签是正面还是负面的阈值。例如,如果输出为 [0.80, 0.43, 0.21, 0.01, 0.32],ground truth 为 [1, 1, 0, 0, 1],则得分超过 0.25 的标签应被判断为正。
谢谢你。
import tensorflow as tf
# hidden Layer
class HiddenLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_h = tf.Variable(tf.random_normal([n_in, n_out],mean = 0.0,stddev = 0.05))
b_h = tf.Variable(tf.zeros([n_out]))
self.w = w_h
self.b = b_h
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
self.output = tf.nn.relu(linarg)
return self.output
# output Layer
class OutputLayer(object):
def __init__(self, input, n_in, n_out):
self.input = input
w_o = tf.Variable(tf.random_normal([n_in, n_out], mean = 0.0, stddev = 0.05))
b_o = tf.Variable(tf.zeros([n_out]))
self.w = w_o
self.b = b_o
self.params = [self.w, self.b]
def output(self):
linarg = tf.matmul(self.input, self.w) + self.b
self.output = tf.nn.relu(linarg)
return self.output
# model
def model():
h_layer = HiddenLayer(input = x, n_in = 20000, n_out = 1000)
o_layer = OutputLayer(input = h_layer.output(), n_in = 1000, n_out = 4000)
# loss function
out = o_layer.output()
cross_entropy = -tf.reduce_sum(y_*tf.log(out + 1e-9), name='xentropy')
# regularization
l2 = (tf.nn.l2_loss(h_layer.w) + tf.nn.l2_loss(o_layer.w))
lambda_2 = 0.01
# compute loss
loss = cross_entropy + lambda_2 * l2
# compute accuracy for single label classification task
correct_pred = tf.equal(tf.argmax(out, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, "float"))
return loss, accuracy