我想将所有处理器的 numpy 数组内容收集到一个。如果所有数组的大小相同,则它可以工作。但是,对于依赖于过程的大小的数组,我看不到一种自然的方式来执行相同的任务。请考虑以下代码:
from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size
if rank >= size/2:
nb_elts = 5
else:
nb_elts = 2
# create data
lst = []
for i in xrange(nb_elts):
lst.append(rank*3+i)
array_lst = numpy.array(lst, dtype=int)
# communicate array
result = []
if rank == 0:
result = array_lst
for p in xrange(1, size):
received = numpy.empty(nb_elts, dtype=numpy.int)
comm.Recv(received, p, tag=13)
result = numpy.concatenate([result, received])
else:
comm.Send(array_lst, 0, tag=13)
我的问题在于“收到”分配。我怎么知道要分配的大小?我必须先发送/接收每个数组大小吗?
根据下面的建议,我会选择
data_array = numpy.ones(rank + 3, dtype=int)
data_array *= rank + 5
print '[{}] data: {} ({})'.format(rank, data_array, type(data_array))
# make all processors aware of data array sizes
all_sizes = {rank: data_array.size}
gathered_all_sizes = comm_py.allgather(all_sizes)
for d in gathered_all_sizes:
all_sizes.update(d)
# prepare Gatherv as described by @francis
nbsum = 0
sendcounts = []
displacements = []
for p in xrange(size):
n = all_sizes[p]
displacements.append(nbsum)
sendcounts.append(n)
nbsum += n
if rank==0:
result = numpy.empty(nbsum, dtype=numpy.int)
else:
result = None
comm_py.Gatherv(data_array,[result, tuple(sendcounts), tuple(displacements), MPI.INT64_T], root=0)
print '[{}] gathered data: {}'.format(rank, result)