目标是在 Spark JobServer 的本地实例上创建以下内容:
object foo extends SparkJob with NamedRddSupport
问题:如何解决每个作业中发生的以下错误:
{
"status": "ERROR",
"result": {
"message": "Ask timed out on [Actor[akka://JobServer/user/context-supervisor/439b2467-spark.jobserver.genderPrediction#884262439]] after [10000 ms]",
"errorClass": "akka.pattern.AskTimeoutException",
"stack: ["akka.pattern.PromiseActorRef$$anonfun$1.apply$mcV$sp(AskSupport.scala:334)", "akka.actor.Scheduler$$anon$7.run(Scheduler.scala:117)", "scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)", "scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:691)", "akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(Scheduler.scala:467)", "akka.actor.LightArrayRevolverScheduler$$anon$8.executeBucket$1(Scheduler.scala:419)", "akka.actor.LightArrayRevolverScheduler$$anon$8.nextTick(Scheduler.scala:423)", "akka.actor.LightArrayRevolverScheduler$$anon$8.run(Scheduler.scala:375)", "java.lang.Thread.run(Thread.java:745)"]
}
}
Spark JobServer 更详细的错误描述:
job-server[ERROR] Exception in thread "pool-100-thread-1" java.lang.AbstractMethodError: spark.jobserver.genderPrediction$.namedObjectsPrivate()Ljava/util/concurrent/atomic/AtomicReference;
job-server[ERROR] at spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:248)
job-server[ERROR] at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
job-server[ERROR] at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
job-server[ERROR] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
job-server[ERROR] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
job-server[ERROR] at java.lang.Thread.run(Thread.java:745)
如果有人想查看代码:
package spark.jobserver
import org.apache.spark.SparkContext._
import org.apache.spark.{SparkContext}
import com.typesafe.config.{Config, ConfigFactory}
import collection.JavaConversions._
import scala.io.Source
object genderPrediction extends SparkJob with NamedRddSupport
{
// Main function
def main(args: scala.Array[String])
{
val sc = new SparkContext()
sc.hadoopConfiguration.set("fs.tachyon.impl", "tachyon.hadoop.TFS")
val config = ConfigFactory.parseString("")
val results = runJob(sc, config)
}
def validate(sc: SparkContext, config: Config): SparkJobValidation = {SparkJobValid}
def runJob(sc: SparkContext, config: Config): Any =
{
return "ok";
}
}
版本信息:Spark 是 1.5.0 - SparkJobServer 是最新版本
提前非常感谢大家!