我正在运行 Lasagne 和 Theano 来创建我的卷积神经网络。我目前包括
l_shape = lasagne.layers.ReshapeLayer(l_in, (-1, 3,130, 130))
l_conv1 = lasagne.layers.Conv2DLayer(l_shape, num_filters=32, filter_size=3, pad=1)
l_conv1_1 = lasagne.layers.Conv2DLayer(l_conv1, num_filters=32, filter_size=3, pad=1)
l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1_1, 2)
l_conv2 = lasagne.layers.Conv2DLayer(l_pool1, num_filters=64, filter_size=3, pad=1)
l_conv2_2 = lasagne.layers.Conv2DLayer(l_conv2, num_filters=64, filter_size=3, pad=1)
l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2_2, 2)
l_conv3 = lasagne.layers.Conv2DLayer(l_pool2, num_filters=64, filter_size=3, pad=1)
l_conv3_2 = lasagne.layers.Conv2DLayer(l_conv3, num_filters=64, filter_size=3, pad=1)
l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3_2, 2)
l_conv4 = lasagne.layers.Conv2DLayer(l_pool3, num_filters=64, filter_size=3, pad=1)
l_conv4_2 = lasagne.layers.Conv2DLayer(l_conv4, num_filters=64, filter_size=3, pad=1)
l_pool4 = lasagne.layers.MaxPool2DLayer(l_conv4_2, 2)
l_conv5 = lasagne.layers.Conv2DLayer(l_pool4, num_filters=64, filter_size=3, pad=1)
l_conv5_2 = lasagne.layers.Conv2DLayer(l_conv5, num_filters=64, filter_size=3, pad=1)
l_pool5 = lasagne.layers.MaxPool2DLayer(l_conv5_2, 2)
l_out = lasagne.layers.DenseLayer(l_pool5, num_units=2, nonlinearity=lasagne.nonlinearities.softmax)
我的最后一层是一个密集层,它使用 softmax 来输出我的分类。我的最终目标是检索概率而不是分类(0 或 1)。
当我调用 get_all_param_values() 时,它为我提供了一个扩展数组。我只想要最后一个密集层的权重和偏差。你怎么办?我试过 l_out.W 和 l_out.b 和 get_values()。
提前致谢!